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The paper suggests a similarity function for applications of empirical similarity theory in which the
notion of similarity is asymmetric. I propose defining similarity in terms of a quasimetric. I suggest a
particular quasimetric and explore the properties of the empirical similarity model given this function.
The proposed function belongs to the class of quasimetrics induced by skewed norms. Finally, I provide
a skewness axiom that, when imposed in lieu of the symmetry axiom in the main result of Billot et al.
(2008), characterizes an exponential similarity function based on a skewed norm.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Similarity-based reasoning is an important topic in a wide
range of fields, including artificial intelligence, cognitive science,
decision theory, economics, and jurisprudence. Also known as
analogical reasoning or case-based reasoning, similarity-based
reasoning entails reasoning by analogy to past cases. A similarity-
based reasoner evaluates the similarity between past cases and
the case at hand and reaches a decision through application of the
principle that like cases should be treated alike.

Gilboa et al. (2006) and Billot et al. (2005) suggested an
axiomatic theory of similarity-based reasoning for real-valued
assessment problems, known as empirical similarity theory.1
Under this theory, assessments are made according to similarity-
weighted averages of prior assessments. In particular, the theory
posits that, given a new data point x ∈ Rn and a database of prior
cases (xi, yi)i≤t , xi ∈ Rn and yi ∈ R for all i ≤ t , one assesses
the value of a real variable y according to the formula y =


i≤t

s(xi, x)yi/


i≤t s(xi, x), where s : Rn
×Rn

→ R++, known as
the similarity function, indexes the similarity between data points.
Gilboa et al. (2006) developed the theory for the case where y is
a real number, while Billot et al. (2005) developed the theory for
the case where y is a probability vector. Gilboa et al. (2011) and
Lieberman (2012) extended the theory to the problems of density
estimation and autoregression, respectively.

Both Gilboa et al. (2006) and Billot et al. (2005) provided axiom-
atizations of empirical similarity theory with a generic similarity
function. Althoughneither assumed aparticular similarity function
or even a particular functional form, Gilboa et al. (2006) expressed
interest in similarity functions that are based on a metric. Two
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1 The theory is closely related to case-based decision theory (Gilboa and
Schmeidler, 2001).
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similarity functions have received the most attention in the litera-
ture: the reciprocal similarity function, s(xi, x) = 1/(1 + d(xi, x)),
and the exponential similarity function, s(xi, x) = exp(−d(xi, x)),
where d is a metric on Rn.

Billot et al. (2008) provided an axiomatization of an exponen-
tial similarity function that is based on a norm, i.e., s(xi, x) =

exp(−N(x − xi)) for some norm N on Rn. They also axiomatized
the special cases of an exponential similarity function based on the
standard Euclidean norm and on a weighted Euclidean norm. Re-
cently, the literature has focused on models with an exponential
similarity function based on a weighted Euclidean metric (Lieber-
man, 2010; Gilboa et al., 2011).2

Defining similarity in terms of ametric (whether or not themet-
ric is induced by a norm) imposes restrictions on the similarity
function that follow from the properties of a metric.3 In the case
of the exponential similarity function, the symmetry of d implies
that s is symmetric, i.e., s(xi, x) = s(x, xi), while the triangle in-
equality for d implies that s satisfies a form ofmultiplicative transi-
tivity, namely, s(xi, x) ≥ s(xi, z)s(z, x) (Billot et al., 2008). In many
applications of empirical similarity theory, the restrictions on the
similarity function that follow from defining similarity in terms of
a metric may be reasonable. In other applications, however, these
restrictions are problematic.4

2 A notable exception is Gayer et al. (2007), which estimated an empirical
similarity model with a reciprocal similarity function based on a weighted
Euclidean metric.
3 Note, however, that the similarity function in empirical similarity theory

satisfies positivity irrespective of whether it is based on a metric. The positivity of
the similarity function follows from the axiomatizations in Gilboa et al. (2006) and
Billot et al. (2005).
4 Indeed, some argue that these restrictions are problematic in any application

that purports to model human reasoning. There is work in psychology that
questions whether human similarity judgments obey metric properties such as
symmetry and the triangle inequality (e.g., Tversky, 1977; Tversky and Gati, 1982).
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In particular, there are numerous applications of empirical
similarity theory in which the apposite notion of similarity is
not symmetric. Consider, for example, applying the theory to
model judicial decisions in legal cases. In a legal model, because
the similarity function s determines how much weight the judge
gives the outcome of a prior case in deciding the outcome of the
new case, one properly interprets s as measuring precedential
influence. But precedential influence generally is not symmetric.
In a legal system with hierarchical courts, precedential influence
depends not only on fact similarity (distance in ‘‘fact space’’) but
also on precedential authority (relative position in the judicial
hierarchy). Fact similarity is symmetric, but precedential authority
is not symmetric. All else equal, the precedential authority of a
case decided by a superior court is greater than the precedential
authority of a case decided by an inferior court. Therefore, if the
prior case was decided by a superior court, its influence on the
outcome of the new case ought to be greater than the influence
of the new case on the outcome of the prior case (under the
counterfactual that the new case was decided before the prior
case).

This paper suggests a similarity function for applications of
empirical similarity theory in which the notion of similarity is
not necessarily symmetric. More specifically, I propose defining
similarity in terms of a quasimetric, i.e., a function that satisfies
all the properties of a metric except for symmetry (Wilson, 1931).
Quasimetrics and other asymmetric distance measures have been
used in operations research and related fields to model, inter alia,
rush-hour traffic, flight in the presence of wind, marine navigation
in the presence of currents, and transportation on sloped terrain
(Drezner and Wesolowsky, 1989). In the empirical similarity
literature, Lieberman (2012) has used a different asymmetric
similarity function (not based on a quasimetric) in an application
of his model of similarity-based autoregression.

The paper is organized as follows. Section 2 describes the asym-
metric empirical similaritymodel andproposes an asymmetric dis-
tance measure on which to base the similarity function. It then
explores the properties of the model and provides motivation for
the proposedmeasure. In Section 3, I prove that the proposedmea-
sure is a quasimetric. Section 4 situates the proposed measure in
the class of quasimetrics induced by skewed norms (Plastria, 1992)
and discusses the virtues of this class. Concluding remarks appear
in Section 5. In the Appendix, I provide a ‘‘skewness’’ axiom that,
when imposed in lieu of the ‘‘symmetry’’ axiom in the main result
of Billot et al. (2008), characterizes an exponential similarity func-
tion based on a skewed norm.

2. Asymmetric empirical similarity model

2.1. The model

Following Gilboa et al. (2006) and Billot et al. (2005), I assume
that, given a new data point x ∈ Rn, a database of prior cases
C = (xi, yi)i≤t , xi ∈ Rn and yi ∈ R for all i ≤ t , and a similarity
function s : Rn

×Rn
→ R++, one assesses the value of a real

variable y according to the formula

y = Y (C, x) =


i≤t

s(xi, x)yi
i≤t

s(xi, x)
, (1)

where Y is defined on the set of all databases, C =


t≥1


Rn+1

t ,
and for all data points x ∈ Rn. In what follows, I refer to data points
as ‘‘inputs’’ and to assessments as ‘‘outcomes’’.

According to Eq. (1), the outcome y in the newcase is aweighted
average of the outcomes y1, . . . , yt in the prior cases. The weight
placed on a prior outcome yi in the determination of the new
Fig. 1. The proportion v as a function of ranking in authority space.

outcome y depends on the degree to which the input xi in the
prior case is similar to the input x in the new case. The degree
of similarity is given by s. The greater is the similarity of a prior
input xi to the new input x, the greater is the weight given to the
prior outcome yi in the determination of the new outcome y. Thus,
I interpret s as measuring the ‘‘influence’’ of a prior case on the
assessment of the new case.

Departing from the prior literature, I define the input space
as the Cartesian product of A = Rn−1 and B = R, where A
is the multidimensional space on which inputs are substantively
compared (the ‘‘comparison space’’) and B is the unidimensional
space on which they are ranked in terms of authority (the
‘‘authority space’’). Accordingly, each input x = (xa, xb) ∈ Rn

comprises an a-component xa ∈ A and a b-component xb ∈ B.
In a legal model, for instance, xa gives the position in fact space
(the comparison space) and xb gives the position in the judicial
hierarchy (the authority space).

In accordance with the prior literature, I assume that the
similarity of a prior input xi to a new input x is a decreasing function
of the distance µ in input space from xi to x. That is, I assume

s(xi, x) = f (µ(xi, x)) (2)

for some decreasing function f : R+ → R++. In addition, I assume
µ(x, x) = 0 and f (0) = 1, which together imply that similarity is
reflexive—i.e., s(x, x) = 1. However, I do not assume that similarity
is symmetric. That is, I do not assume s(xi, x) = s(x, xi) for xi ≠ x.
Rather, I wish to allow that similarity is asymmetric—i.e., s(xi, x) ≠

s(x, xi) for xi ≠ x.
To this end, I suggest defining µ as follows. For all xi, x ∈ Rn,

xi ≠ x, let

µ(xi, x) = v(θi)dw(xai , x
a), (3)

where dw denotes the weighted Euclidean metric, i.e.,

dw(xai , x
a) =

n−1
j=1 wj(xaj − xaij)2, wj > 0 for all j,

v(θi) = sec θi + tan θi,

and θi is the polar angle of (dw(xai , x
a),

√
wn(xb − xbi )), wn > 0.

In other words, I suggest defining the distance µ from the input
xi of a prior case to the input x of a new case as a proportion v
of the weighted distance dw between them in comparison space.
All else constant, the proportion v decreases (increases) as the
cardinal ranking in authority space of the prior case increases
(decreases) relative to the new case (see Fig. 1). Consequently, µ is
asymmetric—µ(xi, x) ≠ µ(x, xi) for xi ≠ x. Because f is decreasing,
the asymmetry of µ implies that s is asymmetric as well.
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Fig. 2. Visualization of v.

In Section 3, I prove that µ is a quasimetric on Rn. That is, I
prove that µ satisfies all the properties of metric, apart from sym-
metry.5 In the remainder of this section, I explore the properties of
the model and provide motivation for the specification of µ.

2.2. Properties of the model

As noted in Section 2.1, the model defines the distance µ
from the input xi of a prior case to the input x of a new case
as a proportion v of the weighted distance dw between them in
comparison space. As Fig. 2 illustrates, v < 1 if the prior case
ranks above the new case in authority space (xbi > xb), v = 1 if
the prior case and the new case have the same rank in authority
space (xbi = xb), and v > 1 if the prior case ranks below the new
case in authority space (xbi < xb). I refer to |1 − v| as the authority
factor. All else constant, the authority factor is positively related
to the weighted distance in authority space,

√
wn

xb − xbi
, and

negatively related to the weighted distance in comparison space,
dw . In other words, the authority factor is greater (i) the greater
is the authority gap between the prior case and the new case, (ii)
the more comparable is the prior case to the new case, and (iii) the
greater is the weight placed on authority relative to comparability.

Fig. 3 displays the relationship in the model between influence
(s), comparability (dw), and authority (v). It assumes an exponen-
tial similarity function, s(xi, x) = exp(−µ(xi, x)), implying that
influence decays exponentially with input distance. As the figure
illustrates, the influence of a prior case on the assessment of the
new case is greatest when the prior case is perfectly comparable
to the new case (xai = xa ⇔ dw = 0), and it decays at rate v as
comparability diminishes (i.e., as dw increases). Both the influence
at dw = 0 and the rate of decay for dw > 0 differ depending on the
authority of the prior case. If the prior case has superior authority
(xbi > xb), the influence at dw = 0 is the highest possible (s = 1)
and the rate of decay for dw > 0 is lower (v < 1). If, however, the
prior case has inferior authority (xbi < xb), the influence at dw = 0
is lower (s < 1) and the rate of decay for d > 0 is higher (v > 1).
All else equal, the influence of a prior case with superior authority
is greater than the influence of a prior case with inferior authority.
Moreover, this influence differential increases with the authority
gap,

√
wn

xb − xbi
, as well as the degree of comparability, 1/dw .

5 By contrast, the asymmetric distance measure suggested by Lieberman (2012)
in the context of similarity-based autoregression is not a quasimetric—it does not
always satisfy the triangle inequality on Rn for n > 1.
2.3. Motivation for µ

We can motivate the specification of µ in the model by anal-
ogy to the problem of measuring the work required to slide a
block along an inclined plane (see, e.g., Hodgson et al. (1987)). Let
xi = (xai , x

b
i ) ∈ R3 denote the block’s origination point and x =

(xa, xb) ∈ R3 denote its destination point, where xai , x
a

∈ A = R2

and xbi , x
b
∈ B = R. Assume distance ismeasured by theweighted

Euclidean metric, dw . The distance along the plane from xi to x is

ri = dw(xi, x) = ∥x − xi∥w ,

where ∥·∥w denotes the weighted Euclidean norm. The angle of in-
cline from xi to x is

θi = arctan
√

wn(xb − xbi )
dw(xai , xa)


.

The vertical distance (height) from xi to x is

hi = ri sin θi =
√

wn(xb − xbi ),

which follows from the fact that (ri, θi) are the polar coordinates
of (dw(xai , x

a),
√

wn(xb − xbi )).
The work required to slide the block from xi to x is the product

of the force required to slide the block and the distance over which
the force is exerted. The force required to slide the block has two
components—the force required to overcome friction, F , and the
force required to overcome gravity, which equals the weight of the
block, W . Thus, the work required to slide the block from xi to x is

K(xi, x) = Fri + Whi

= F ∥x − xi∥w + W
√

wn(xb − xbi ).

Observe that K is asymmetric—K(xi, x) ≠ K(x, xi) for xi ≠ x. The
work required to slide the block uphill is greater than the work
required to slide the block the same distance down the same hill.

Turning from the physical world to the world of analogical rea-
soning, let us interpret K as measuring the work that is required to
reason by analogy from a prior case at xi to a new case at x. All else
constant, thework required is greater (i) the less comparable is the
prior case (i.e., the greater is dw(xai , x

a)) and (ii) the less authorita-
tive is the prior case (i.e., the greater is xb−xbi ). Under this interpre-
tation, F and W are cost parameters that determine the marginal
work associated with decreases in comparability and authority.
More specifically, F determines themarginal work associated with
a decrease in comparability, and F and W jointly determine the
marginal work associated with a decrease in authority. Observe
that if we normalize F = W = 1,6 then K corresponds to µ:

µ(xi, x) = v(θi)dw(xai , x
a)

= (sec θi + tan θi) (ri cos θi)

= ri + ri sin θi

= ∥x − xi∥w +
√

wn(xb − xbi ) = K(xi, x).

Defining similarity in terms of µ, therefore, may be motivated by
the intuition that the influence of a prior case on the assessment
of a new case is negatively related to the work required to draw
an analogy from the prior case to the new case. In other words, the
more strained is the analogy, the less influential is the prior case.

3. Proof that µ is a quasimetric

In this section, I prove that the functionµ defined in Section 2.1
is a quasimetric on Rn. Recall the definition of a quasimetric:

6 In the physical world, F = W sin θi . That is, the force of friction depends on the
weight of the block and the angle of incline of the plane, and F = W only if θi = π/2
(45°). In the world of analogical reasoning, however, there is no reason why this
relationshipmust or even should hold, or indeedwhy F must or even should depend
at all onW or θi . In this world, therefore, we can have F = W = 1.
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Fig. 3. Relationship between influence (s), comparability (dw), and authority (v).
Definition 1. A function q : Rn
× Rn

→ R is a quasimetric on Rn if
for all xi, x ∈ Rn:
(i) q(xi, x) ≥ 0;
(ii) q(xi, x) = 0 if and only if xi = x; and
(iii) q(xi, x) ≤ q(xi, z)+q(z, x) for any z ∈ Rn (triangle inequality).

Note that a quasimetric is a metric if it also satisfies symmetry:
q(xi, x) = q(x, xi). A quasimetric is not necessarily symmetric, i.e.,
in general q(xi, x) ≠ q(x, xi).

Proposition 1. For all xai , x
a

∈ Rn−1 and xbi , x
b

∈ R, with xi =

(xai , x
b
i ) and x = (xa, xb), let µ(xi, x) = v(θi)dw(xai , x

a), where dw

denotes the weighted Euclidean distance on Rn−1, v(θi) = sec θi +

tan θi, and θi is the polar angle of (dw(xai , x
a),

√
wn(xb−xbi )),wn > 0.

Then µ is a quasimetric on Rn.

Proof. Recall from Section 2.3 that

µ(xi, x) = v(θi)dw(xai , x
a) = ∥x − xi∥w +

√
wn(xb − xbi ).

(i) Observe that ∥x − xi∥w =


(dw(xai , xa))2 + wn(xb − xbi )2. It

follows that ∥x − xi∥w ≥ |
√

wn(xb − xbi )|, and hence µ(xi, x) ≥ 0.
(ii) If xi = x then ∥x − xi∥w = 0 and (xb − xbi ) = 0, and hence

µ(xi, x) = 0. Now suppose µ(xi, x) = 0 but xi ≠ x. If xi ≠ x
then ∥x − xi∥w > 0 and

√
wn(xb − xbi ) ≠ 0. However, because

∥x − xi∥w ≥ |
√

wn(xb − xbi )|, this implies µ(xi, x) > 0, which
contradicts µ(xi, x) = 0.

(iii) Take any z ∈ Rn. To prove that µ satisfies the triangle
inequality, we must show that µ(xi, x) ≤ µ(xi, z) + µ(z, x). The
condition holds if and only if

∥x − xi∥w ≤ ∥x − z∥w + ∥z − xi∥w +
√

wn(zb − xbi )

+
√

wn(xb − zb) −
√

wn(xb − xbi ).

Observe that
√

wn(zb − xbi ) +
√

wn(xb − zb) −
√

wn(xb − xbi ) = 0.
Observe further that

∥x − xi∥w = ∥(x − z) + (z − xi)∥w ≤ ∥x − z∥w + ∥z − xi∥w

by the subadditivity of norms. Hence, the condition holds. �

4. Skewed norms

The quasimetric µ defined in Section 2.1 belongs to the class
of quasimetrics induced by skewed norms. Plastria (1992) defines
this class as follows. Let N be a norm on Rn and p ∈ Rn. Define the
linearly perturbed norm function L(N, p) by

L(N, p)(x) = N(x) − ⟨p, x⟩ ,
where ⟨·, ·⟩ denotes the scalar product. Observe that L(N, p) is
positively homogeneous, L(N, p)(λx) = λL(N, p)(x) for λ > 0, and
subadditive, L(N, p)(x + z) ≤ L(N, p)(x) + L(N, p)(z). If L(N, p)
is also positive definite, L(N, p)(x) > 0 for all x ≠ 0, then it is
a skewed norm. One can readily show that if L(N, p) is a skewed
norm then q(xi, x) = L(N, p)(x − xi) is a quasimetric.

Recall from Section 2.3 that we can rewrite µ as

µ(xi, x) = ∥x − xi∥w +
√

wn(xb − xbi ), (4)

where ∥·∥w denotes the weighted Euclidean norm. From (4), we
can readily see that µ is induced by a linearly perturbed norm
L(Nµ, pµ), where Nµ = ∥·∥w and pµ = (0, . . . , 0, −

√
wn). More-

over, we can readily show that L(Nµ, pµ) is positive definite, and
therefore qualifies as a skewed norm. Thus, µ is a quasimetric in-
duced by a skewed norm.

A number of other quasimetrics in this class have been
developed for use in continuous location problems in operations
research and related fields; see, e.g., Hodgson et al. (1987) (p-
centroid location), Drezner andWesolowsky (1989) (single facility
location), and Cera et al. (2008) (hunter location). The importance
and popularity of quasimetrics induced by skewed norms stem in
part from two facts. First, they are closely and simply related to the
familiar class ofmetrics induced by norms. Second, they are convex
functions, and thus amenable to the powerful methods of convex
analysis and optimization (Plastria, 2009).

Two additional virtues of this class are its breadth and flexibil-
ity. Althoughµmaybe an attractive specification formany applica-
tions because it is characterized by a familiar norm,Nµ = ∥·∥w , and
a one-parameter perturbation vector, pµ = (0, . . . , 0, −

√
wn),

one can readily fashion an alternative specification by selecting a
different norm N or perturbation vector p. Provided that L(N, p) is
positive definite,7 the alternative specification will be a quasimet-
ric, and hence provide asymmetrywhile preserving the triangle in-
equality.

5. Concluding remarks

The standard empirical similarity model defines similarity in
terms of a metric. This imposes restrictions on the similarity func-
tion that follow from the properties of a metric, including symme-
try. For many applications of empirical similarity theory, however,
the apposite notion of similarity is not symmetric. Defining sim-
ilarity in terms of a quasimetric allows the model to capture

7 Note that L(N, p) is positive definite if Nd(p) < 1, where Nd denotes the dual
of N (Plastria, 1992).
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situations in which similarity judgments are asymmetric. Such
situations arise, for example, when the influence of a prior case de-
pends not only on its comparability but also on its relative weight
of authority. A prime example is judicial decision making in a legal
system with hierarchical courts.

The asymmetric similarity function proposed in this paper is
based on a quasimetric induced by a skewed norm. The class
of quasimetrics induced by skewed norms has several virtues,
including a close resemblance to the familiar class of metrics
induced by norms. In the Appendix, I provide a ‘‘skewness’’ axiom
that, when imposed in lieu of the ‘‘symmetry’’ axiom in the main
result of Billot et al. (2008), characterizes an exponential similarity
function based on a skewed norm. The skewness axiom essentially
postulates exponential discounting of the influence of prior cases
with inferior authority relative to equidistant prior cases with
superior authority. It thus illuminates an intuitive and observable
implication of the exponential empirical similarity model when
similarity is based on a skewed norm.

Appendix

As noted in Section 1, Billot et al. (2008) provided an axiomati-
zation of an exponential similarity function that is based on a norm,
i.e.,

s(xi, x) = exp(−N(x − xi)) (5)

for some norm N on Rn. More specifically, they assumed the data
generating process was described by Eq. (1) and imposed five
axioms on Y that characterized (5). The five axioms are shift invari-
ance, ray monotonicity, symmetry, ray shift invariance, and self-
relevance.

The symmetry axiom requires that for every x ∈ Rn,

Y (((0, 1), (x, 0)), x) = Y (((x, 1), (0, 0)), 0). (6)

Eq. (6) considers two situations. In the first, outcome 1 occurred at
0 ∈ Rn and outcome 0 occurred at x ∈ Rn, and an assessment is
requested for x ∈ Rn. In the second, outcome 1 occurred at x ∈ Rn

and outcome 0 occurred at 0 ∈ Rn, and an assessment is requested
for 0 ∈ Rn. Symmetry requires that the assessment is the same in
both situations.

In the presence of shift invariance,8 the symmetry axiom is
equivalent to requiring that for every x ∈ Rn,

Y (((0, 1), (2x, 0)), x) = Y (((2x, 1), (0, 0)), x). (7)

To see this, observe that (6) is equivalent to

s(0, x)
s(0, x) + s(0, 0)

=
s(x, 0)

s(x, 0) + s(x, x)
,

which, because s(0, 0) = s(x, x) = 1, holds if and only if s(0, x) =

s(x, 0). Note that s(0, x) = s(x, 0) if and only if

s(0, 0)
s(0, 0) + s(x, 0)

=
s(x, x)

s(x, x) + s(0, x)
.

It follows that (6) is equivalent to

Y (((0, 1), (x, 0)), 0) = Y (((x, 1), (0, 0)), x). (6′)

By the shift invariance axiom,

Y (((0, 1), (x, 0)), 0) = Y (((x, 1), (2x, 0)), x).

It follows that (6′) is equivalent to

Y (((x, 1), (2x, 0)), x) = Y (((x, 1), (0, 0)), x). (6′′)

8 The shift invariance axiom requires that for every database C = (xi, yi)i≤t ∈ C
and every x, z ∈ Rn , Y ((xi+z, yi)i≤t , x+z) = Y ((xi, yi)i≤t , x). See Billot et al. (2008).
Observe that (6′′) is equivalent to
s(x, x)

s(x, x) + s(2x, x)
=

s(x, x)
s(x, x) + s(0, x)

,

which holds if and only if s(0, x) = s(2x, x). Note that s(0, x) =

s(2x, x) if and only if
s(0, x)

s(0, x) + s(2x, x)
=

s(2x, x)
s(2x, x) + s(0, x)

,

which is equivalent to (7).
Much like (6), Eq. (7) considers two situations: (i) outcome 1

occurred at 0 ∈ Rn and outcome 0 occurred at 2x ∈ Rn and
(ii) outcome 1 occurred at 2x ∈ Rn and outcome 0 occurred at
0 ∈ Rn. In both situations, an assessment is requested at x ∈ Rn.
Symmetry requires that the assessments are equal. Stated another
way, symmetry requires that the log ratio of the assessments is
identically zero:

ln

Y (((0, 1), (2x, 0)), x)
Y (((2x, 1), (0, 0)), x)


= 0.

Observe that (7) is equivalent to s(0, x) = s(2x, x). Intuitively,
therefore, symmetry requires that, all else equal, the influence of a
prior case on the assessment of a new case at x is the samewhether
the prior case occurs at 0 or 2x.

The central claim of this Appendix is that the following ‘‘skew-
ness’’ axiom, when imposed in lieu of the symmetry axiom in
the main result of Billot et al. (2008), characterizes an exponen-
tial similarity function based on a skewed norm, i.e., s(xi, x) =

exp(−γ (x − xi)), where γ (x) = N(x) − ⟨p, x⟩ for some norm N
on Rn and p ∈ Rn and γ (x) > 0 for all x ≠ 0.

Axiom 1 (Skewness). For every x ∈ Rn,

Y (((0, 1), (2x, 0)), x) = Y (((2x, 1), (0, 0)), x)
× exp(−2⟨p, x⟩) (8)

for some p ∈ Rn.

Exactly like (7), (8) requests an assessment at x ∈ Rn in situations
(i) and (ii). In contrast to symmetry, however, skewness does not
require that the assessment is the same in both situations. Instead,
skewness requires that the assessment in the prior situation equals
the assessment in the latter situation discounted by a factor of
exp(−2 ⟨p, x⟩). Stated another way, skewness requires that the log
ratio of the assessments is linear:

ln

Y (((0, 1), (2x, 0)), x)
Y (((2x, 1), (0, 0)), x)


= −2 ⟨p, x⟩ .

Intuitively, skewness requires that, all else equal, the influence of
a prior case on the assessment of a new case at x is discounted by a
factor of exp(−2 ⟨p, x⟩) when the prior case occurs at 0 relative to
when it occurs at 2x. Observe that the discount factor equals one for
p = 0, in which case the assessments are the same and skewness
reduces to symmetry.

The claim may be established in three steps. The first step
is to prove that in the absence of the symmetry axiom, the re-
maining four axioms (shift invariance, ray monotonicity, ray shift
invariance, and self-relevance) characterize an exponential simi-
larity function that is based on a gauge, i.e., s(xi, x) = exp(−g(x −

xi)) for some gauge g on Rn.9 The proof comprises a straightfor-
ward modification of the proof of Theorem 1 in Billot et al. (2008);
hence, it is omitted.

9 A gauge is a nonnegative function g : Rn
→ R+ satisfying:

(i) g(x) = 0 if and only if x = 0;
(ii) g(λx) = λg(x) for all x ∈ Rn and λ ≥ 0; and
(iii) g(x, z) ≤ g(x) + g(z) for all x, z ∈ Rn .

See, e.g., Rockafellar (1970).
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The second step is to show that Axiom 1 holds if and only if
g(−x) − g(x) is linear. Observe that Axiom 1 is equivalent to

s(0, x)
s(0, x) + s(2x, x)

=
s(2x, x)

s(2x, x) + s(0, x)
× exp(−2⟨p, x⟩),

which holds if and only if s(0, x) = s(2x, x)×exp(−2 ⟨p, x⟩). From
s(xi, x) = exp(−g(x − xi)), it follows that Axiom 1 holds if and
only if exp(−g(x)) = exp(−g(−x)) × exp(−2 ⟨p, x⟩), which in
turn holds if and only if g(−x) − g(x) = −2 ⟨p, x⟩.

The final step is to invoke Theorem 3 of Plastria (1992), which
establishes, inter alia, that g(−x) − g(x) is linear if and only if g is
a skewed norm.

Assuming that the assessments Y are observable, Axiom 1 may
be interpreted as an observable implication of the exponential
empirical similarity model when similarity is based on a skewed
norm. In principle, therefore, Axiom 1 is testable. A difficulty in
testing Axiom 1 is that it requires the existence of an n-parameter
vector p such that (8) holds for every x. The difficulty is lessened
somewhat in the case ofµ, however, because the p associatedwith
µ has only one free parameter, wn.10
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