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Definition

Expected utility theory is the dominant model of
decision-making under uncertainty in law and
economics. It posits that people choose among
risky prospects, or lotteries, modeled as probabil-
ity distributions over a set of possible outcomes,
as if they assign a utility value to each outcome
x according to a function u(x) and select the lottery
that maximizes the expected value of u(x). This
entry surveys expected utility theory and its devel-
opment. It covers the St. Petersburg Paradox and
Bernoulli’s seminal contribution; the axiomatic
formulations of expected utility theory by von
Neumann and Morgenstern, Savage, and
Anscombe and Aumann; and the modeling of
risk and risk aversion in expected utility theory.
It then discusses the challenges to expected utility
theory posed by the Allais and Ellsberg paradoxes

and the Rabin critique and points to non-expected
utility theories that respond to these challenges.

The St. Petersburg Paradox

In the early eighteenth century, Daniel Bernoulli
(1954 [1738]) introduced the twin ideas of
expected utility and diminishing marginal utility
to resolve a problem submitted by his cousin,
Nicolas Bernoulli, to the mathematician Pierre
Rémond de Montmort in 1713. The problem,
known as the St. Petersburg Paradox, runs as
follows: Peter tosses a fair coin until it lands on
heads. He offers to give Paul two dollars if the
coin lands on heads in the first toss, four dollars if
it lands on heads in the second toss, eight dollars if
it lands on heads in the third toss, 16 dollars if it
lands on heads in the fourth toss, and so on, so that
with each subsequent toss the payoff doubles. In
short, Paul wins 2n dollars if the coin lands on
heads in the n th toss. What is the value to Paul of
playing the game?

The “paradox” is that the value to Paul is finite,
whereas the expected value of the game is infinite.
In other words, if Paul valued risky prospects at
their expected value, he would be willing to pay
any price to play the game. But Paul is not willing
to pay any price. Indeed, people generally are
willing to pay a relatively small amount to play
the game. As Ian Hacking surmised, “few of us
would pay even $25 to enter such a game”
(Hacking 1980).
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To resolve the paradox, Bernoulli suggested that
people do not value risky prospects at their expected
value, but rather at their expected utility. That is, he
suggested that, given (finite) initial wealth w < 1
and entry price p< w, the value of the game to Paul
was not EV ¼ P1

n¼1
1
2n

� �
wþ 2n � pð Þ, but rather

EU ¼ P1
n¼1

1
2n

� �
u wþ 2n � pð Þ, where u is Paul’s

utility function, which captures how Paul values
money. Moreover, Bernoulli suggested that Paul’s
utility function is concave – specifically,
u(x) ¼ log (x) – which captures the idea of
diminishing marginal utility: “a gain of one thou-
sand ducats is more significant to a pauper than to a
rich man” (Bernoulli 1954 [1738]). Together, these
suggestions “unravel the knot” (ibid.): although the
expected value of the game is
EV ¼ wþ2�p

2
þ wþ4�p

4
þ wþ8�p

8
þ⋯

� �
, which is

infinite, the expected utility of the game is

EU ¼ log wþ2�pð Þ
2

þ log wþ4�pð Þ
4

þ log wþ8�pð Þ
8

þ⋯
h i

,

which is finite. It follows that the maximum entry
price p that Paul is willing to pay is given implicitly
by

P1
n¼1

1
2n

� �
log wþ 2n � pð Þ ¼ log wð Þ. For

example, if Paul is a millionaire
(w¼ 1, 000, 000), then he is willing to pay 20 dol-
lars and change p ffi 20:88ð Þ.

Although Bernoulli’s theory provided a reso-
lution to the St. Petersburg Paradox, it did not
answer the “why” question: Why would Paul
value risky prospects at their expected utility?
That is, why would people choose among risky
prospects so as to maximize expected utility?

Objective Expected Utility Theory

Two centuries after Bernoulli, mathematician
John von Neumann and economist Oskar
Morgenstern offered an answer to this question
(von Neumann and Morgenstern 1953 [1947]).
They proposed a set of axioms that, if satisfied
by an individual’s preferences over risky pros-
pects, are logically equivalent to the individual
valuing risky prospects according to their
expected utility. Stated another way, they pro-
posed a set of axioms on preferences over risky
prospects that guarantee the existence of a utility
function such that one risky prospect is preferred

to another risky prospect if and only if the
expected utility of the former risky prospect is
greater than the expected utility of the latter
risky prospect.

The original formulation by von Neumann and
Morgenstern (vNM) has been described as “terse
and somewhat enigmatic” (Fishburn 1988). For
this reason, textbook treatments of the vNM theo-
rem frequently rely on subsequent reformulations,
including those by Hernstein and Milnor (1953),
Luce and Raiffa (1957), Jensen (1967), and
Fishburn (1970). I follow suit.

Let X denote an arbitrary set of outcomes and
let Δ(X) denote the set of simple probability dis-
tributions on X. Elements of Δ(X) are known as
lotteries. For any two lotteries p, q ∈ Δ(X), and
any α ∈ [0, 1], define the compound or mixed
lottery αp + (1 � α)q ∈ P(X) by (αp + (1 � α)
q)(x) ¼ αp(x) + (1 � α)q(x) for every outcome
x ∈ X. People have preferences and make choices
over lotteries. Let ≽ denote an individual’s pref-
erence relation on Δ(X). That is, for any p,
q ∈ Δ(X), p ≽ q means that the individual prefers
lottery p to lottery q, in the sense that the individ-
ual either strictly prefers lottery p to lottery q
(i.e., p � q) or is indifferent between lottery
p and lottery q (i.e., p � q).

The vNM theorem relies on three axioms.

A1. WEAK ORDER: ≽ is complete and transitive.
A2. CONTINUITY: For every p, q, r ∈ Δ(X) such that

p � q � r, there exist α, β ∈ (0, 1) such that
αp + (1 � α)r � q � βp + (1 � β)r.

A3. INDEPENDENCE: For every p, q, r ∈ Δ(X) and
every α ∈ (0, 1), p ≽ q if and only if
αp + (1 � α)r ≽ αq + (1 � α)r.

The first axiom (weak order) requires that the
individual’s preference relation ≽ is complete and
transitive. The individual’s preference relation ≽
is complete if, for every p, q∈Δ(X), p≽ q or q≽ p
or both. That is, completeness requires that, for
every pair of lotteries, the individual either strictly
prefers one to the other or is indifferent between
them. The individual’s preference relation ≽ is
transitive if, for every p, q, r ∈ Δ(X), p ≽ q and
q ≽ r implies p ≽ r. That is, transitivity requires

2 Expected Utility Theory



that if the individual prefers one lottery to a sec-
ond lottery and prefers the second lottery to a third
lottery, then the individual must prefer the first
lottery to the third lottery. Transitivity ensures
that the individual’s preferences are acyclic.

The second axiom (continuity) requires that
small changes in probabilities do not change the
individual’s preferences. Stated another way, con-
tinuity requires that no lottery is infinitely more or
less desirable than another lottery. Given p� q� r,
it rules out the possibility that the individual
would prefer the lottery q for sure to a mixed
lottery involving a near one chance of p and a
near zero chance of r (which would imply that
the lottery r is infinitely less desirable than the
lottery q) or that the individual would prefer a
mixed lottery involving a near zero chance of
p and a near one chance of r to the lottery q for
sure (which would imply that the lottery p is infi-
nitely more desirable than the lottery q).

The third axiom (independence) requires that if
two lotteries are each mixed with a third lottery,
then the individual’s preference between the
resulting mixed lotteries is independent of the
third lottery and depends only on the individual’s
preference between the original two lotteries.
Stated another way, independence requires that
the individual’s preferences over mixed lotteries
satisfy a form of separability: the individual com-
pares mixed lotteries based on their distinct ele-
ments, disregarding their common elements.

The normative appeal of the independence
axiom stems in part from the fact that it equates
to a form of dynamic consistency. We can inter-
pret αp + (1 � α)r and αq + (1 � α)r as two-stage
lotteries in which nature first determines whether
the individual receives the choice between p and
q (with probability α) or alternatively receives
r (with probability 1 � α). Provided that the indi-
vidual’s preferences obey consequentialism (the
individual’s preferences over lotteries depend
only on future consequences and not on past his-
tory or counterfactuals) and reduction of com-
pound lotteries (the individual is indifferent
between a compound lottery and the
corresponding reduced lottery), independence is
violated if the individual plans to choose p over
q in the event that she receives the choice (which

implies αp + (1 � α)r ≽ αq + (1 � α)r) but then
chooses q over p if and when she receives the
choice (which implies q � p). See, e.g., Karni
and Schmeidler (1991), Volij (1994), and
Nebout (2014).

The vNM theorem states that an individual’s
preferences over lotteries satisfy A1, A2, and A3
if and only if there exists a utility function
u : X ! ℝ such that for every p, q ∈ Δ(X),

p ≽ q if and only if
X
x∈X

p xð Þu xð Þ �
X
x∈X

q xð Þu xð Þ:

That is, the vNM theorem provides that a person
chooses among risky prospects so as to maximize
expected utility if and only if his preferences over
lotteries obey the vNM axioms.

While vNMprovided an answer to the question
of why (or, more precisely, when) a person would
value risky prospects according to their expected
utility, vNM’s theory of expected utility pre-
supposed the existence of objective probabilities.
About a decade before vNM, Frank Ramsey
(1931) and Bruno de Finetti (1964 [1937]) inde-
pendently formulated theories of expected utility
in which probabilities are subjective, i.e., in which
probabilities represent degrees of belief in the
likelihood of uncertain events. However, both
Ramsey and de Finetti effectively presupposed
the existence of utilities. Moreover, Ramsey only
sketched a proof of the existence of subjective
probabilities, and de Finetti only considered mon-
etary bets (and thus formulated a theory of
expected value, not expected utility, with subjec-
tive probabilities).

Subjective Expected Utility Theory

About a decade after vNM, the American mathe-
matician Leonard Savage (1972 [1954]) provided
a formulation of subjective expected utility the-
ory, regarding as the “crowning glory” of decision
theory (Kreps 1988), that synthesized the ideas of
vNM, Ramsey, and de Finetti. Fishburn (1970)
has called it the “most brilliant axiomatic theory
of utility ever developed.”
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The primitives of Savage’s formulation are a
set of outcomes, denoted by X, and a set of states
of the world, denoted by S. People have prefer-
ences and make choices over acts, which are func-
tions from states to outcomes, f : S ! X. Let
F denote the set of all acts and let ≽ denote an
individual’s preference relation on F.

Savage proposed a set of seven axioms that, if
satisfied by an individual’s preferences over acts,
guarantee the existence of a utility function
u : X ! ℝ and a subjective probability measure
P on S such that for every f, g ∈ F,

f ≽ g if and only if

ð
S

u f sð Þð ÞdP sð Þ �
ð
S

u g sð Þð ÞdP sð Þ:

In other words, Savage’s axioms provided an
answer to the question of why/when a person
would choose among risky prospects so as to
maximize his subjective expected utility.

At the core of Savage’s theory of subjective
expected utility is the sure-thing principle, which
plays a role analogous to that of the independence
axiom in vNM’s theory of objective expected
utility. Essentially, the sure-thing principle
requires that an individual has conditional prefer-
ences, e.g., he conditionally prefers f to g given an
event A � S, and that if he conditionally prefers
f to g both given A and given AC ¼ S\A, then he
unconditionally prefers f to g. Like the indepen-
dence axiom, the sure-thing principle imposes a
form of separability on preferences: the sure-thing
principle implies that if f and g disagree (yield
different outcomes) on A but agree (yield the
same outcomes) on AC, then the individual’s con-
ditional preference between f and g given
A determines his unconditional preference, and
therefore his choice, between f and g. Stated
another way, the individual compares acts by
focusing on events on which they disagree, and
disregarding events on which they agree. And like
the independence axiom, the appeal of the sure-
thing principle stems in part from the fact that it
equates to a form of dynamic consistency
(provided that preferences satisfy a form of con-
sequentialism). See Ghirardato (2002); see also

Arrow (1971, ch. 2), Myerson (1979), and
Hammond (1988).

About a decade after Savage, Frank Anscombe
and Robert Aumann (1963) provided an alterna-
tive formulation of subjective expected utility the-
ory in which subjective probabilities are defined
in terms of objective probabilities. Like Savage,
Anscombe and Aumann (AA) began with a set of
outcomes X and a set of states S. However, they
further posited the existence of objective random-
ization devices (e.g., roulette wheels), “with sto-
chastic independence between successive
observations, and with stated values for the
chances of simple outcomes” (Anscombe and
Aumann 1963). These give rise to objective, sim-
ple lotteries over X, as in vNM. People have
preferences and make choices over acts, which
AA redefined as functions from states to lotteries
over outcomes, h : S! Δ(X). Let H denote the set
of all acts and let ≽ denote an individual’s prefer-
ence relation on H. Once the individual chooses
an act h ∈ H, nature determines the state s ∈ S
(resolving subjective uncertainty), yielding the
lottery p ¼ h(s) ∈ Δ(X), the outcome x ∈ X of
which is determined by a randomization device
calibrated to p (resolving objective uncertainty).

AA’s formulation entails five axioms – the
three vNM axioms plus two additional axioms,
each applied to preferences over AA acts, which
are de facto compound lotteries. The key addi-
tional axiom is monotonicity, which requires that,
for every h, h0 ∈ H, if h(s)≽ h0(s) for all s ∈ S then
h ≽ h0. Monotonicity’s appeal stems in part from
the fact that it equates to a form of state indepen-
dence. Denote by hps the act that yields lottery p in
state s and yields lottery r in all other states of the
world. Monotonicity is violated if hps ≽ hqs but
hqs0 � hps0 for some lottery q 6¼ p and state s0 6¼ s.
In other words, monotonicity is violated if the
individual’s preference between two acts that
yield different lotteries in one state of the world
(and only one state of the world) depend on the
state of the world in which they yield different
lotteries.

The AA axioms guarantee the existence of a
utility function u : X ! ℝ and a subjective
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probability measure P on S such that for every h,
h0 ∈ H,

h ≽ h0 if and only if

ð
S

X
x∈X

h sð Þ xð Þu xð ÞdP sð Þ

�
ð
S

X
x∈X

h0 sð Þ xð Þu xð ÞdP sð Þ:

That is, the individual chooses h so as to maximize
his subjective expectation (with respect to P) of
the objective expectation (with respect to
p ¼ h(s)) of u(x).

Risk and Risk Aversion in Expected
Utility Theory

Returning to the St. Petersburg Paradox, recall
that Bernoulli’s explanation for Paul’s aversion
to risk – i.e., Paul’s unwillingness to pay an actu-
arially fair price to play Peter’s game – invokes
not only the idea that Paul values risky prospects
at their expected utility, but also the idea that
Paul’s utility function is concave. More than
200 years after Bernoulli, economist Kenneth
Arrow (1971) and statistician John Pratt (1964)
independently developed the theory of risk aver-
sion within the expected utility framework.

Within the expected utility framework, an indi-
vidual is risk averse – in the sense that, for any
risky prospect, he prefers a sure amount equal to
the expected value of the risky prospect to the
risky prospect itself – if and only if his utility
function is concave. Formally, let u denote the
individual’s utility function, letw denote his initial
wealth, and let ez, a random variable, denote his
risky prospect. The individual is risk averse if and
only if

u wþ E ez½ �ð Þ � E u wþ ezð Þ½ �,

where E is the expectation operator. This inequal-
ity is known as Jensen’s inequality, and it is a
characteristic property of a concave function.
Assuming u is increasing and twice differentiable,

a necessary and sufficient condition for this
inequality to hold is that u00(w) 	 0 for all w, or
equivalently that u0(w) is decreasing as
w increases, i.e., u exhibits diminishing marginal
utility.

Two useful measures of an individual’s degree
of risk aversion are the Arrow-Pratt coefficients of
absolute and relative risk aversion:

rA wð Þ ¼ � u00 wð Þ
u0 wð Þ and rR wð Þ ¼ �wu00 wð Þ

u0 wð Þ :

Conceptually, both rA(w) and rR(w) are measures
of the concavity of u. That is, both measure the
rate at which the individual’s marginal utility
diminishes. The former measures the rate at
which marginal utility decreases when wealth
increases by one unit, whereas the latter measures
the rate at which marginal utility decreases when
wealth increases by 1%.

The appeal of the Arrow-Pratt coefficients of
risk aversion is due not only to their interpretation
as measures of the rate of decay for marginal
utility, but also to their kinship with two intuitive,
behavioral measures of risk aversion.

The first measure is Pratt’s risk premium
p w,ezð Þ, defined implicitly by the equation

u wþ E ez½ � � p w,ezð Þð Þ ¼ E u wþ ezð Þ½ �:

The risk premium is the maximum amount,
beyond the expected (or actuarial) value of the
risk, E ez½ �, that an individual with wealth w would
be willing to pay to insure against the risk ez. The
amount c w,ezð Þ ¼ E ez½ � � p w,ezð Þ is known as the
certainty (or cash) equivalent of the risk; it is the
sure change in wealth that has the same effect on
utility as bearing the riskez. Thus, the risk premium
is the amount by which the risk’s expected value
exceeds its cash equivalent.

Pratt (1964) showed that, under suitable regu-
larity conditions on u and for “small” risks, the
risk premium associated with risk ez is approxi-
mately equal to one-half the variance of ez times
the individual’s degree of absolute risk aversion
evaluated at expected wealth:
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p w,ezð Þ 
 1

2
V ezð ÞrA wþ E ez½ �ð Þ:

Similarly, he showed that if we measure the risk
and the risk premium not in absolute terms but as
proportions of initial wealth – let ez⁎ ¼ ez=w and
π⁎¼ π/w – then the risk premium is approximately
equal to one-half the variance of the risk times the
individual’s degree of relative risk aversion eval-
uated at expected wealth:

p⁎ w,ez⁎ð Þ 
 1

2
V ez⁎ð ÞrR wþ wE ez⁎½ �ð Þ:

Roughly, the Arrow-Pratt degree of risk aversion
is twice the risk premium per unit of variance, at
least for small risks. See Menezes and
Hanson (1970).

The second measure is Arrow’s probability
premium p w,ezð Þ, defined implicitly by

u wð Þ ¼ E u wþ ezð Þ½ � ¼ 1

2
1þ p w,ezð Þ½ �u wþ hð Þ

þ 1

2
1� p w,ezð Þ½ �u w� hð Þ

for the special case ez ¼ �h, h> 0. In other words,
the probability premium is the increment, above
fair odds, that would make an individual with
wealth w indifferent between the status quo and
an equiprobable bet of �h.

Arrow (1971) showed that, under suitable reg-
ularity conditions on u and for “small” stakes h,
the probability premium associated with risk ez is
approximately equal to one-half the stakes times
the individual’s degree of absolute risk aversion
evaluated at initial wealth:

p w,ezð Þ 
 1

2
hrA wð Þ:

Similarly, he showed that if we measure the bet
not in absolute terms but in proportion to wealth –
let ez⁎ ¼ �h⁎w, 0 < h⁎ < 1 – then the risk pre-
mium is approximately equal to one-half the
stakes times the individual’s degree of relative
risk aversion evaluated at initial wealth:

p w,ez⁎ð Þ 
 1

2
h⁎rR wð Þ:

Roughly, the Arrow-Pratt degree of risk aversion
is twice the probability premium the individual
requires per unit risked, at least for small risks.

Note that Arrow (1971) derived not the proba-
bility premium p but rather the probability
p⁎ ¼ 1

2
1þ p½ �. The above derivation of p follows

the derivation in Pratt (1964).
A few years after Arrow and Pratt indepen-

dently developed the theory of risk aversion
within the expected utility framework, Hadar
and Russell (1969), Hanoch and Levy (1969),
and (most famously) Rothschild and Stiglitz
(1970) independently developed the theory of
increasing risk within the expected utility frame-
work. The key concepts of this theory are first-
and second-order stochastic dominance.

Let ez1 and ez2 denote two risky prospects, with
cumulative distribution functions F1 and F2,
respectively. We say that ez1 first-order stochasti-
cally dominates ez2 if F1(z)	 F2(z) for all z. In other
words, ez1 first-order stochastically dominates ez2 if
the latter is obtained from the former by a transfer
of probability mass from higher payoffs to lower
payoffs. Equivalently, ez1 first-order stochastically
dominates ez2 if the latter is obtained by adding
negative noise to the former; i.e., ez2 has the same
distribution as ez1 þee, where ee 	 0 in all events.
The importance of first-order stochastic dominance
within an expected utility framework is that if ez1
first-order stochastically dominates ez2, then every
expected utility maximizer with an increasing util-
ity function (i.e., who prefers more wealth to less)
necessarily prefers ez1 to ez2.

Assume now that ez1 and ez2 have the same
mean, i.e., E ez1 ¼ E ez1½� �½ . We say that ez1 second-
order stochastically dominates ez2 ifÐ z
�1F1 tð Þdt � Ð z

�1F2 tð Þdt for all z. Rothschild
and Stiglitz (1970) showed that this integral con-
dition, and therefore second-order stochastic
dominance, is equivalent to two intuitive notions
of increasing risk. First, they showed that it is
equivalent to the notion that ez2 is a mean-
preserving spread of ez1 (or, more precisely, thatez2 is obtained from ez1 by a sequence of mean-
preserving spreads). Intuitively, a mean-
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preserving spread is a transfer of probability mass
from the center to the tails that leaves the mean
unchanged. Note that if ez2 is a mean-preserving
spread of ez1, then ez2 has a higher variance than ez1.
Second, they showed that it is equivalent to the
idea that ez2 is obtained by adding white noise toez1; i.e., ez2 has the same distribution as ez1 þee,
where E eej ez1 ¼ zð Þ ¼ 0 for all z. Most impor-
tantly, Rothschild and Stiglitz showed that if ez1
second-order stochastically dominates ez2, then
every expected utility maximizer with an increas-
ing and concave utility function necessarily pre-
fers ez1 to ez2. In other words, they showed that
within the expected utility framework, if ez2 is
riskier than ez1 in the sense of second-order sto-
chastic dominance, then every risk averter (who
prefers more wealth to less) prefers ez1 to ez2.

Challenges to Expected Utility Theory

Because of its mathematical elegance and norma-
tive appeal, as well as the explanatory power of
many of its predictions, expected utility theory is
the dominant model of individual decision-
making under risk and uncertainty in economics
and hence in law and economics. Nevertheless,
there have been many challenges to expected util-
ity theory as a descriptive theory. Two of the most
famous and important challenges are the Allais
and Ellsberg paradoxes.

The Allais paradox is due to French economist
Maurice Allais (1979 [1953]). It comprises two
thought experiments, both involving two hypo-
thetical choice problems. In the first experiment,
the two choice problems are

Problem 1: Choose between

Prospect A: 100% chance of winning
100 million

Prospect B: 10% chance of winning
500 million

89% change of winning
100 million

1% chance of winning nothing

Problem 2: Choose between

Prospect C: 11% chance of winning
100 million

89% chance of winning nothing

ProspectD: 10% chance of winning
500 million

90% chance of winning nothing

Allais postulated that most individuals would
prefer A to B and D to C. However, this would
contradict vNM’s objective expected utility the-
ory. Under that theory, A � B if and only if

u wþ 100ð Þ > 0:10u wþ 500ð Þ
þ 0:89u wþ 100ð Þ þ 0:01u wð Þ,

and D � C if and only if

0:10u wþ 500ð Þ þ 0:90u wð Þ
> 0:11u wþ 100ð Þ þ 0:89u wð Þ:

The second inequality, however, holds if and only
if

0:10u wþ 500ð Þ þ 0:89u wþ 100ð Þ þ 0:01u wð Þ
> u wþ 100ð Þ,

which contradicts the first inequality. One can
show that it is the independence axiom that is
violated by the Allais paradox. Intuitively, this is
because the equivalence of the second and third
inequalities relies on the fact that expected utility
is linear in the probabilities, and the independence
axiom is responsible for this property of objective
expected utility theory.

In the second thought experiment, the two
choice problems are

Problem 1: Choose between

Prospect A: 100% chance of winning
100 million

Prospect B: 98% chance of winning
500 million

2% chance of winning nothing

Expected Utility Theory 7



Problem 2: Choose between

Prospect C: 1% chance of winning 100 million

99% chance of winning nothing

ProspectD: 0.98% chance of winning
500 million

99.02% chance of winning
nothing

Again, Allais postulated that most individuals
would prefer A to B and D to C. Again, however,
this would contradict objective expected utility
theory by violating the independence axiom. The
set of outcomes is {500, 100, 0}. Let a, b, c, and
d denote the lotteries associated with A, B, C, and
D, respectively, and let e¼ (0, 0, 1). Observe that
c ¼ .01a + .99e and d ¼ .01b + .99e. Thus, the
combination a � b and d � c evidently contra-
venes the independence axiom.

The Ellsberg paradox is due to the American
economist Daniel Ellsberg (1961). (Ellsberg is
famous outside of economics for releasing the
Pentagon Papers to the New York Times in
1971.) Like the Allais paradox, the Ellsberg para-
dox comprises two thought experiments, both
involving two hypothetical choice problems. In
the first experiment, there are two urns. Urn
I contains 100 red and black balls in an unknown
ratio. Urn II is known to contain 50 red balls and
50 black balls. The two choice problems are

Problem 1: Choose between

Gamble A: Draw a ball from urn II and win
$100 if a red ball is drawn.

Gamble B: Draw a ball from urn I and win
$100 if a red ball is drawn.

Problem 2: Choose between

Gamble C: Draw a ball from urn I and win
$100 if a black ball is drawn.

Gamble D: Draw a ball from urn II and win
$100 if a black ball is drawn.

Ellsberg postulated that most individuals
would prefer A to B and D to C. However, this
would contradict Savage’s subjective expected
utility theory, for it would imply that the

subjective probability of drawing a red ball from
urn I is less than one-half in problem 1 and greater
than one-half in problem 2. As Ellsberg observed,
this is “inconsistent with the essential properties
of probability relationships,” and hence we “must
conclude that [these] choices are not revealing
judgments of ‘probability’ at all.”

In the second experiment, there is one urn. It is
known to contain 30 red balls plus 60 black and
yellow balls in an unknown ratio. One ball is to be
drawn at random from the urn. The two choice
problems are

Problem 1: Choose between

Gamble A: Bet on “red” and win $100 if a red
ball is drawn.

Gamble B: Bet on “black” and win $100 if a
black ball is drawn.

Problem 2: Choose between

Gamble C: Bet on “red or yellow” and win
$100 if a red or yellow ball is
drawn.

Gamble D: Bet on “black or yellow” and win
$100 if a black or yellow ball is
drawn.

Again, Ellsberg postulated that most individ-
uals would prefer A to B and D to C. Again,
however, this would contravene subjective
expected utility theory – specifically, the sure-
thing principle. Let a, b, c, and d denote the acts
associated with A, B, C, and D, respectively. The
set of outcomes is {100, 0} and the set of states is
{red, black, yellow}. Let E denote the event “red
or black” (i.e., “not yellow”) and observe that
c and d disagree on E but agree on EC

(i.e., “yellow”). Observe further that c versus
d given E is tantamount to a versus b – both
amount to “bet on red” versus “bet on black.”
By the sure-thing principle, therefore, d � c
requires b � a.

A third important challenge to expected utility
theory is the so-called Rabin critique (Rabin 2000;
see also Rabin and Thaler 2001). Rabin argued
that expected utility theory cannot provide a plau-
sible account of risk aversion over both small-
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stakes and large-stakes gambles. His starting point
is the observation that under expected utility the-
ory, risk aversion derives from a concave utility
function over wealth, which captures diminishing
marginal utility for money. He then demonstrated
that if a person exhibits plausible risk aversion
over small-stakes gambles, the implied rate of
diminishing marginal utility (i.e., the implied
degree of concavity) yields implausible risk aver-
sion over large-stakes gambles.

Consider the following example. Suppose a
person with initial wealth of $200 and CARA
utility function u(x) ¼ 1 � e�rx rejects a gamble
to lose $20 with probability 48% or win $20 with
probability 52%, which seems plausible. (CARA
stands for constant absolute risk aversion.) Under
expected utility theory, this implies

0:48 1� e� 200�20ð Þr
� �

þ 0:52 1� e� 200þ20ð Þr
� �

	 1� e�200r,

which in turn implies r � 1
20

log 13
12
. Now consider

a gamble to lose $190 with probability 48% or win
an infinite amount with probability 52%. Because
r � 1

20
log 13

12
, the expected utility of this gamble is

less than the expected utility of the status quo. To
see this, observe that

0:48 1� e� 200�190ð Þr
� �

þ 0:52 1� e� 200þ1ð Þr
� �

< 1� e�200r

if and only if r > 1
190

log 25
12
, which is true because

r � 1
20

log 13
12
> 1

190
log 25

12
. Thus, expected utility

theory dictates that the person must also reject this
gamble, which seems implausible.

Rabin (2000) shows that the problem is more
general. His “calibration” theorem implies that for
any concave utility function, if an expected utility
maximizer rejects small gambles for a range of
initial wealth, then he must also reject large gam-
bles for wealth levels in that range – so large as to
imply implausible degrees of risk aversion. For
instance, if an expected utility maximizer rejects a
50–50 gamble to lose $100 or win $110 for all
levels of initial wealth up to $300,000, then he

will also reject the following 50–50 gambles
given an initial wealth of $290,000: lose $1000
or win $718,190; lose $2000 or win $12 million;
lose $6000 or win $180 million; lose $10,000 or
win $1.3 billion. If the win amount in the initial
gamble is $125, then he will reject the following
50–50 gambles: lose $1000 or win $160 billion;
lose $6000 or win $89 trillion; lose $10,000 or
win $7.7 quadrillion. And if he rejects the initial
gamble for all levels of initial wealth, then he will
reject a 50–50 gamble to lose $1000 or win an
infinite amount.

The Rabin critique at first received push back
(for a review, see Wakker 2010, pp. 244–245), but
it is now widely accepted as a genuine critique of
expected utility theory (see, e.g., Bleichrodt et al.
2019). Note that Samuelson (1963) made a related
argument almost 40 years earlier. He showed that
expected utility theory implies that if a person
rejects a small-stakes gamble with positive
expected value (e.g., a 50–50 bet to lose $100 or
win $200), then he must also reject a large-stakes
gamble comprising 100 repetitions of the gamble
even though the probability of an aggregate loss is
extremely low (less than 0.1% in the foregoing
example).

Although the Allais and Ellsberg paradoxes
and the Rabin critique were originally presented
as thought experiments, they have been replicated
many times in the laboratory (Camerer 1995; Cox
et al. 2013; Bleichrodt et al. 2019).

Non-expected Utility Theories

There are numerous alternatives to and general-
izations of expected utility theory that respond to
the challenges posed by the Allais and Ellsberg
paradoxes and the Rabin critique. Perhaps the
most famous is prospect theory, which was devel-
oped by psychologists Daniel Kahneman and
Amos Tversky (1979) and Tversky and Kahne-
man (1992). Other well-known non-expected util-
ity theories include rank-dependent expected
utility theory (Quiggin 1982), regret theory (Bell
1982; Fishburn 1982; Loomes and Sugden 1982,
1987), disappointment theory (Bell 1985; Loomes
and Sugden 1986; Gul 1991), Yaari’s (1987) dual
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theory, Choquet expected utility theory
(Schmeidler 1989; Gilboa 1987), maxmin
expected utility theory (Gilboa and Schmeidler
1989), α-maxmin expected utility theory
(Ghirardato et al. 2004), multiplier preferences
(Hansen and Sargent 2001; Strzalecki 2011),
smooth ambiguity preferences (Klibanoff et al.
2005), variational preferences (Maccheroni et al.
2006), uncertainty averse preferences (Cerreia-
Vioglioa et al. 2011), and expected uncertain util-
ity theory (Gul and Pesendorfer 2014). Surveys of
non-expected utility theories include Starmer
(2000), Sugden (2004), Etner et al. (2012), and
Keith and Ahner (2021). Textbook treatments
include Wakker (2010) and Dhami (2016).

Cross-References
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