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The paper offers a formal model of analogical legal reasoning and takes the model to

data. Under the model, the outcome of a new case is a weighted average of the outcomes

of prior cases. The weights capture precedential influence and depend on fact similarity

(distance in fact space) and precedential authority (position in the judicial hierarchy).

The empirical analysis suggests that the model is a plausible model for the time series

of U.S. maritime salvage cases. Moreover, the results evince that prior cases decided

by inferior courts have less influence than those decided by superior courts. (JEL: D01,

D83, K40)

1. Introduction

How do judges reason about the law? There are many theories. The

canonical theory is that judges reason by analogy from case to case (Levi,

1949; Weinreb, 2005). This method of reasoning is known as analogi-

cal legal reasoning (ALR) to jurisprudence scholars and case-based legal

reasoning to scholars in the field of artificial intelligence and law.1

I thank Conor Larkin for his herculean research assistance. Thanks also to the
editor, two anonymous referees, Andrew Christensen, Joshua Fischman, workshop par-
ticipants at the Center in Law, Economics, and Organization at the University of Southern
California Gould School of Law, and conference participants at the 2010 Conference on
Empirical Legal Studies. This paper is based on a chapter of my doctoral dissertation at
Cornell University.

1. Some commentators argue that its use of analogy makes legal reasoning a dis-
tinctive form of reasoning (e.g., Fried, 1981; Weinreb, 2005). The mystical notion that
legal reasoning is a distinctive form of reasoning was famously articulated by Sir Edward
Coke, the Chief Justice of England, who denied the authority and competence of the King
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In its purest form, ALR involves reasoning directly from prior cases

to the case at hand—the judge evaluates the similarities and differences

between prior cases and the case at hand and reaches a decision through

application of the principle that like cases should be treated alike (Alexander

and Sherwin, 2008). Notably, ALR operates without invoking a legal rule

that governs the decision in the case at hand (Sunstein, 1993, 1996).2 In this

way, ALR stands in contrast to rule-based legal reasoning (RLR), which

involves reasoning deductively from legal rules (Alexander and Sherwin,

2008; Schauer, 2009).3 In its purest form, RLR operates without reference

to prior cases—the judge simply applies the governing legal rule to the case

at hand.4

ALR constitutes a “legalist” theory of judicial behavior (Posner, 2008).

According to the legalist theory, “judges decide cases through systematic

application of the external, objective sources of authority that classically

comprise the law” (Cross, 2003).5 Although the legalist theory is the tradi-

tional theory of judicial behavior in legal circles, it has many critics. Perhaps

the leading criticism of the legalist theory is that it suffers from theoretical

and empirical indeterminacy (Cross, 2003). ALR has been especially tar-

geted by critics, with one commentator complaining that “it is infrequently

described with any rigor or care” (Alexander, 1996).6

This paper has two objectives. The first objective is to offer a formal

model of ALR. The model posits that the outcome in the case at hand is a

of England to render legal judgments on the grounds that legal questions “are not to be
decided by natural reason but by the artificial reason and judgment of law.” Prohibitions
Del Roy, 77 Eng. Rep. 1342 (1607).

2. On the different forms of ALR, see generally Macagno and Walton (2009).
3. See also Westen (1982), Eisenberg (1988), Posner (1990, 1995, 2006, 2008),

Schauer (1991), and Alexander (1996, 1998).
4. At most, the judge uses prior cases to infer (perhaps abductively or inductively)

the governing legal rule. However, she does not reason directly from case to case.
5. Of course, there are many other theories of judicial behavior. Posner (2008)

identifies no fewer than nine theories, including most notably the legalist theory, the
attitudinal theory, which posits that judges decide cases according to their ideological
preferences (e.g., Segal and Spaeth, 1993, 2002), and the economic and strategic theories,
which posit that judges decide cases strategically, taking into account the responses of
other actors, to promote their ideology (e.g., Epstein and Knight, 1998; Smith and Tiller,
2002), enhance their reputation or career prospects (e.g., Miceli and Coşgel, 1994; Levy,
2005), or further some other specified objective.

6. Notable exceptions include Sunstein (1993, 1996), Brewer (1996), and Weinreb
(2005). Alexander (1996) also asserts that ALR is a “fantasy.”
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weighted average of the outcomes of prior cases. The weight placed on the

outcome of a prior case in the weighted average captures the precedential

influence of the prior case and depends on the fact similarity (distance in

fact space) and precedential authority (position in the judicial hierarchy) of

the prior case relative to the case at hand.

The ALR model is closely related to the empirical similarity models of

Gilboa et al. (2006) and Billot et al. (2005), as well as the wider litera-

ture on case-based decision theory.7 Case-based decision theory is a model

of reasoning by analogy to past cases (Gilboa and Schmeidler, 2001).8

Empirical similarity theory is a closely related model for real-valued assess-

ment problems. Under the empirical similarity model, new assessments

are made according to similarity-weighted averages of prior assessments.9

In most applications of empirical similarity theory, the similarity func-

tion (i.e., the function that determines the weights in the weighted aver-

age) is symmetric—the influence of a prior case on a new case is the same

as the (counterfactual) influence of the new case on the prior case. This

is because the similarity function typically is based on a metric, usually

a weighted Euclidean metric (e.g., Gayer et al., 2007; Lieberman, 2010;

Gilboa et al., 2011). In the ALR model, by contrast, the similarity function

is asymmetric—the influence of a prior case on a new case is not necessar-

ily the same as the (counterfactual) influence of the new case on the prior

case. This is because the similarity function is based on a quasimetric, i.e.,

a function that satisfies the properties of a metric, apart from symmetry.

7. In case-based decision theory, the term “case” is used generically; it does not
refer to a legal case.

8. See also Gilboa and Schmeidler (1995, 1996, 1997, 2000, 2002, 2003) and
Gilboa et al. (2002). Case-based decision theory was inspired by work on case-based
reasoning in artificial intelligence (Riesbeck and Schank, 1989) and harkens back to the
notion that all human “reasonings concerning matter of fact are founded on a species of
Analogy” (Hume, 1748).

9. Empirical similarity theory is related to various methods in computer science,
statistics, and related fields, including, most notably, kernel methods (Pagan and Ullah,
1999), which are commonly used in nonparametric estimation; nearest-neighbor methods
(Dasarathy, 1991; Devroye et al., 1996), which are commonly used in machine learning
and pattern recognition; and conditional autoregressive (CAR) and simultaneous autore-
gressive (SAR) models (Banerjee et al., 2004), which are commonly used in the analysis
of areal and other spatial data. I expand upon the connection between empirical similarity
theory and kernel regression in Section 3.2. For discussions of the relationship between
empirical similarity theory, on the one hand, and nearest neighbor methods and CAR
models, on the other hand, see Lieberman (2010) and Gilboa et al. (2011).
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This allows the ALR model to capture an important feature of reasoning by

analogy in law, namely that precedential influence depends not only on fact

similarity, which is symmetric, but also on precedential authority, which is

not symmetric.10

The second objective of the paper is to take the ALR model to data. The

data comprise the time series of reported decisions by federal courts in U.S.

maritime salvage cases.11 The first step of the empirical analysis is to embed

the ALR model in a statistical model. The next step is to assess whether the

ALR model is a plausible model for the data. I focus on two properties of the

ALR model: (i) it is an autoregressive process and (ii) the process has a unit

root. To investigate whether an autoregressive process could have generated

the data, I estimate a linear regression model and test for autocorrelation

in the residuals using parametric and nonparametric tests. To investigate

whether the data have a unit root, I employ a “nearly efficient” unit root test.

The results suggest that the data are not inconsistent with an autoregressive

process that has a unit root.

The final step of the empirical analysis is to estimate the ALR model by

maximum likelihood and test the null hypothesis that the similarity func-

tion is symmetric. This is the crucial step of the empirical analysis, as the

key innovation of the ALR model, and the paper’s main contribution, is the

asymmetry of the similarity function. I find that the symmetry hypothesis is

rejected at the 1% level. The implication is that precedential authority, and

not just fact similarity, matters for precedential influence. All else equal

(namely, fact similarity), the precedential influence of a prior case that was

decided by a inferior court is significantly less than the precedential influ-

ence of a prior case that was decided by a superior court.

The remainder of the paper is organized as follows: Section 2 presents

the ALR model. Section 3 contains the empirical analysis. In Section 4,

10. Lieberman (2012) and Argenziano and Gilboa (2012) also feature asymmetric
similarity functions, the former in a model of similarity-based autoregression and the
latter in a model of history-dependent belief formation in coordination games. In neither
paper, however, is the similarity function asymmetric because it depends on the authority
of the prior case. In Lieberman (2012), the similarity function is asymmetric because
it depends on the direction of the change of the characteristics of a variable from one
time to the next. In Argenziano and Gilboa (2012), the similarity function is asymmetric
because it depends on the outcome of the prior game.

11. In Section 3.1, I describe the data and explain why I selected U.S. maritime
salvage cases for the empirical analysis.
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I discuss certain limitations of the ALR model and the empirical analysis,

as well as directions for future research.

2. The ALR Model

2.1. Legal System

Let K denote the set of judges or courts in the legal system. The courts in

K are ordered in accordance with the hierarchy of courts in the legal system.

Accordingly, I sometimes refer to K as the authority space.

Let Q denote the set of questions of law that may be presented to a

court. For each question q ∈Q, there exists a set of conclusions of law

Y that a court may reach with respect to question q. There also exists an

array of issues of fact that the court must resolve in order to reach a con-

clusion with respect to question q . For each issue i , there exists a set of

findings of fact �i that the court may make with respect thereto. Accord-

ingly, each question q ∈Q induces a fact space � = �1 × · · · × �n . Each

element φ = (φ1, . . . , φn) ∈ � is a fact pattern. Given question q, the set of

conclusions Y and the fact space � are known and unique.

For example, consider the question of patentability under U.S. patent

law. The authority space K comprises the U.S. district courts (at the bot-

tom of the hierarchy), the U.S. courts of appeals (in the middle), and the

U.S. Supreme Court (at the top). The question of law q is whether an inven-

tion is patentable. The set of conclusions is Y = {0, 1}, where zero repre-

sents no and 1 represents yes. The issues of fact are whether the inven-

tion is (i) a patentable subject matter (i.e., a process, machine, article of

manufacture, or composition of matter, or any improvement thereof), (ii)

novel, (iii) nonobvious, and (iv) useful. For each issue i , the set of find-

ings is �i = {0, 1}, where again zero represents no and 1 represents yes.

Accordingly, the fact space is � = {0, 1} × {0, 1} × {0, 1} × {0, 1}, and one

example fact pattern is φ = (1, 1, 0, 1).

A case involving question q is a triple c = (φ, κ, y), where φ ∈ �,

κ ∈K, and y ∈Y . Define x = (φ, κ) as the inputs of the case and y as

the outcome of the case. The set of all possible cases involving question

q is C = (� × K) × Y . I assume throughout the paper that the inputs and

outcomes of cases are or may be represented by real variables: � ⊆ R
n ,

K⊆ R, and Y ⊆ R.



Analogical Legal Reasoning: Theory and Evidence 165

At time t , a court is presented with question q and a body of evidence.

Based on the evidence, the court makes findings of fact φt ∈ �. The court

has access to a q-relevant case history Ct = (c1, . . . , ct−1), where c j =
(x j , y j ) ∈ C is a prior case involving question q . How the court reaches its

conclusion yt depends on its method of legal reasoning. Under ALR, the

outcome of the case at hand is a function of the inputs of the case at hand

as well as the history of prior cases, yt = Y (xt , Ct ).12

2.2. ALR Model

I model ALR as similarity-weighted averaging of prior outcomes.

Formally

yt = Y (xt , Ct ) =
∑
j<t

(
s(x j , xt )∑
j<t s(x j , xt )

)
y j , (1)

where s : R
n+1×R

n+1 → R++ is a function that indexes the similarity

between the inputs x j of the prior case and the inputs xt of the case at hand.

Equation (1) posits that the outcome yt in the case at hand is a weighted

average of the outcomes y1, . . . , yt−1 of prior cases. The weight placed on

the outcome y j of a prior case depends on the degree to which the inputs x j

of the prior case are similar to the inputs xt of the case at hand. The degree

of input similarity is given by s. The greater is the input similarity s of a

prior case, the greater is the weight given to the outcome y j of the prior

case in the determination of the outcome yt of the case at hand. Hence, I

interpret s as measuring the precedential influence of a prior case on the

case at hand.

I assume that input similarity s—and, therefore, precedential

influence—is an exponentially decaying function of the distance μ

from the inputs x j of the prior case to the inputs xt of the case at hand:

s(x j , xt ) = exp(−μ(x j , xt )), (2)

where μ : R
n+1×R

n+1 → R+ with μ(x j , xt ) = 0 only if x j = xt . The

assumption that influence decays exponentially with distance seems nat-

ural and appears in other contexts. For instance, Shepard (1987) derives a

12. Contrast this with RLR, under which the outcome of the case at hand is a
function of the inputs only, yt = Y (xt ).
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law of psychological generalization in which the probability of generalizing

a response from one stimulus to another decays exponentially with the dis-

tance between the stimuli in psychological space. White (2001) argues that

both theory and evidence support exponential decay of memory with dis-

tance in time (scaled as
√

t). And Glaeser et al. (2003) introduce a model of

socially influenced behavior in which social influence decays exponentially

with social distance. What’s more, Billot et al. (2008) provide an axiomatic

justification for specifying an exponential similarity function in the present

context (similarity-weighting averaging as a model of reasoning).13

Next, I assume that input distance μ is a proportional function, with pro-

portionality factor v, of the weighted Euclidean distance d between the facts

φ j of the prior case and the facts φt of the case at hand:

μ(x j , xt ) = v(x j , xt )d(φ j , φt ), (3)

where v : R
n+1×R

n+1 → R++ captures the precedential authority of the

prior case relative to the case at hand and d : R
n×R

n → R+, which captures

the fact similarity of the prior case relative to the case at hand, is given by

d(φ j , φt ) =
√√√√ n∑

i=1

ωi (φ j i − φti )2, ωi > 0 for all i . (4)

Note that the weights ω1, . . . , ωn in the weighted Euclidean distance d

reflect the relative importance of the n issues of fact that the court must

resolve in order to reach a conclusion with respect to the legal question

at issue.

In specifying v, I am guided by three criteria. First, all else equal,

prior cases decided by inferior courts should have less influence than prior

cases decided by superior courts. At the same time, prior cases decided by

coequal courts should have no less influence than prior cases decided by

inferior courts and no more influence than prior cases decided by superior

courts. Second, the influence penalty (resp. bonus) for prior cases decided

13. More specifically, Billot et al. (2008) provided an axiomatization of an expo-
nential similarity function based on a metric induced by norm. The key axiom for the
exponential form is ray shift invariance, which requires that if the facts of all prior cases
lie along a ray emanating from the facts of the case at hand, then an equal shift along this
ray of the facts of all prior cases does not change the outcome of the case at hand.



Analogical Legal Reasoning: Theory and Evidence 167

by inferior (resp. superior) courts should diminish as the distance in fact

space to the case at hand becomes large. This is motivated by the notion

that the lesser is the factual similarity of a prior case (i.e., the greater is d),

the less important is the relative position of the deciding court in the judicial

hierarchy. Third, the input distance μ = vd should satisfy all the properties

of a metric, apart from symmetry. As stated previously, the key innovation

of the ALR model, and the paper’s main contribution, is the asymmetry of

the similarity function. This is accomplished by relaxing the symmetry of

the distance measure on which the similarity function is based. However, it

is neither necessary nor proper to relax any of the other properties. Hence,

the specification of v should preserve these other properties, including the

triangle inequality.14

Guided by these criteria, I assume that v is given by

v(x j , xt ) = sec θ j t + tan θ j t , (5)

where

θ j t = arctan

(
β(κt − κ j )

d(φ j , φt )

)
, β � 0.

Below I show that with v specified by Equation (5), the ALR model satisfies

the first and second criteria set forth above. Moreover, in the Appendix,

I prove that the third criterion is satisfied as well.

Before proceeding, however, I want to supplement the instrumental moti-

vation for v with a geometric motivation. To draw an analogy between a

prior case and the case at hand, a court has to traverse (metaphorically) the

distance in input space from the prior case to the case at hand. The greater

is this distance, the more strained is the analogy. In input space (or fact-

authority space), θ j t is the direction from the prior case (the origin) to the

case at hand, where the distance in fact space is given by d(φ j , φt ), the dis-

tance in authority space is given by β(κt − κ j ), and the radial distance is

14. The third criterion rules out many otherwise desirable specifications of v. For
instance, a simple way to impose asymmetry would be to define v as follows:

v(x j , xt ) =
{

1 if κ j > κt

β if κ j �κt
, β �1

(cf. Lieberman, 2012; Argenziano and Gilboa, 2012). Under this specification of v,
however, μ = vd generally does not satisfy the triangle inequality on R

n+1 (n > 0).
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Figure 1. Geometry of v.

given by

f (x j , xt ) =
√

(d(φ j , φt ))2 + (β(κt − κ j ))2

(see Figure 1). Note that sec θ j t = f (x j , xt )/d(φ j , φt ) and tan θ j t =
β(κt − κ j )/d(φ j , φt ). It follows that

μ(x j , xt ) = v(x j , xt )d(φ j , φt ) = f (x j , xt ) + β(κt − κ j ).

That is, input distance equals radial distance plus an adjustment that takes

into account both the direction and distance in authority space. The adjust-

ment is positive if the prior case has inferior authority (κ j < κt ) and negative

if the prior case has superior authority (κ j > κt ). It is harder to travel uphill

than downhill. If the prior case has coequal authority (κ j = κt ), there is no

adjustment and μ = d . The court only has to overcome any factual dissim-

ilarity to draw the analogy.15

15. In Teitelbaum (2013), I provide an axiomatic motivation for v. In brief, I show
that the input distance μ = vd is a quasimetric induced by a skewed norm. A skewed norm
is a positive definite function F(N , p)(x) = N (x) − 〈p, x〉, where N is a norm on R

n ,
p ∈ R

n , and 〈·, ·〉 denotes the scalar product (Plastria, 1992). I then provide a “skewness”
axiom that, when imposed in lieu of the symmetry axiom in the main result of Billot et al.
(2008), characterizes an exponential similarity function based on a skewed norm. The
skewness axiom essentially postulates exponential discounting of the influence of prior
cases with inferior authority relative to equidistant prior cases with superior authority.
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Figure 2. Visualization of v.

Figure 2 provides a visualization of v. Observe that v = 1 if β = 0. Thus,

β = 0 implies that precedential influence is symmetric, depending only on

fact similarity and not on precedential authority. However, if β > 0, then

v > 1 if the prior case has inferior authority (κ j < κt ), v = 1 if the prior

case has coequal authority (κ j = κt ), and v < 1 if the prior case has superior

authority (κ j > κt ). Hence, β > 0 begets influence penalties and bonuses

for prior cases with inferior and superior authority, respectively, and thus

implies that precedential influence is asymmetric.

Figure 3 displays the relationship in the ALR model between prece-

dential influence (s), fact similarity (d), and precedential authority (v).16

The precedential influence of a prior case is greatest when the facts of the

prior case are identical to the facts of the case at hand (φ j = φt ⇔ d = 0),

and it decays exponentially at rate v as fact similarity decreases (i.e., as

16. Note that fact similarity and precedential authority are negatively related to
d and v, respectively.
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Figure 3. Precedential Influence in the ALR Model.

d increases). Both the precedential influence at d = 0 and the rate of decay

for d > 0 differ depending on the precedential authority of the prior case.

If the prior case was decided by a superior court (κ j > κt ), the preceden-

tial influence at d = 0 is the highest possible (s = 1) and the rate of decay

for d > 0 is the lowest possible (v < 1). If the prior case was decided by a

coequal court (κ j = κt ), the precedential influence at d = 0 is equally high

(s = 1) but the rate of decay for d > 0 is higher (v = 1). If the prior case was

decided by an inferior court (κ j < κt ), the precedential influence at d = 0

is lower (s < 1) and the rate of decay for d > 0 is even higher (v > 1). All

else equal (namely, d), therefore, the influence of prior cases with inferior

authority is less than the influence of prior cases with superior authority, and

the influence of prior cases with coequal authority is greater than the influ-

ence of prior cases with inferior authority and not less than the influence

of prior cases with superior authority. Moreover, the size of the influence

penalty (resp. bonus) for prior cases with inferior (resp. superior) authority

increases with the degree of fact similarity (i.e., as d increases) at a rate

determined by (and positively related to) the parameter β.



Analogical Legal Reasoning: Theory and Evidence 171

Importantly, Figure 3 illustrates that with v specified by Equation (5),

the ALR model satisfies the first and second criteria set forth above. In the

Appendix, I prove that the third criterion is satisfied as well. That is, I prove

that μ = vd is a quasimetric, i.e., a function that satisfies the properties of

a metric, apart from symmetry.

3. Empirical Analysis

In this section, I take the ALR model to data. After describing the data,

I embed the ALR model in a statistical model and assess whether it is a

plausible model for the data. I then estimate the ALR model by maximum

likelihood and test the null hypothesis that the similarity function is sym-

metric (i.e., β = 0) against the alternative hypothesis that it is asymmetric

(i.e., β > 0).

3.1. Data

The data comprise the time series of reported decisions by federal courts

in U.S. maritime salvage cases. Under U.S. maritime law, a salvor of imper-

iled maritime property on navigable waters is entitled to a monetary award

from the owner.17 There are two forms of maritime salvage: “contract” sal-

vage and “pure” salvage. Contract salvage is rendered pursuant to a prior

agreement. Pure salvage is rendered voluntarily in the absence of a contract.

The data include only pure salvage cases.

In the United States, the federal courts have exclusive jurisdiction in

pure salvage cases. There are three elements of a valid pure salvage claim:

(i) a marine peril; (ii) service voluntarily rendered; and (iii) success in whole

or in part. In the case of a valid pure salvage claim, the court determines

the award according to six factors enumerated by the Supreme Court in

The Blackwall, 77 U.S. 1 (1869): (1) the labor expended by the salvors in

rendering the salvage service; (2) the promptitude, skill, and energy dis-

played in rendering the service and saving the property; (3) the value of the

property employed by the salvors in rendering the service, and the danger

to which such property was exposed; (4) the risk incurred by the salvors in

17. The following is a bare bones description of U.S. maritime salvage law. For
more detailed overviews, see, e.g., Force (2004) or Schoenbaum (2011, Chapter 16).
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securing the property from the impending peril; (5) the value of the property

saved; and (6) the degree of danger from which the property was rescued.

The law of salvage provides no precise formula or rule for computing a

salvage award on the basis of the Blackwall factors. The court has broad

discretion in fashioning the award based on its findings with respect to the

Blackwall factors, though it is bound to apply all of the Blackwall factors

and the award generally may not exceed the value of the property saved.

There are several reasons why I selected maritime salvage cases for the

empirical analysis. First, the outcome (the salvage award) is a continuous

variable (a dollar amount) and the inputs (the Blackwall factors) are well

defined and stable over time.18 Second, awards in maritime salvage cases

arguably are apolitical legal questions. Moreover, it is hard to imagine that a

maritime salvage case is an opportunity for a federal judge to advance strate-

gic goals such as career advancement. Thus, if there is any setting in which

we should expect a legalist model of judicial behavior to be operative (and

other models such as attitudinal or strategic models to be inoperative), it is

maritime salvage cases. Third, the law of maritime salvage is federal law,

and federal courts have exclusive jurisdiction in cases involving claims for

salvage awards. Accordingly, state variation in law or courts is not an issue.

Fourth, it seems reasonable to treat the federal courts as a single adjudica-

tive body for purposes of maritime salvage cases: there is no split among

the circuits (The Blackwall is controlling precedent for all circuits); there

are no specialty courts for maritime cases; and it is generally believed that

federal courts are reasonably uniform in quality. Lastly, although the crite-

ria for determining a maritime salvage award are well defined and stable

through time, the law provides no precise formula or rule. This leaves open

the possibility that courts are engaging in ALR.

The data comprise 684 pure salvage cases from 1799 to 2007. The

cases were identified using seven search methods. The first search method

was “KeyCiting” and “Shepardizing” The Blackwall in Westlaw and Lex-

isNexis, respectively. The second search method was performing key-

word searches in three databases: Westlaw’s Federal Maritime Law-Cases

(FMRT-CS); Lexis’ Admiralty Cases, Federal and State (MEGA); and

18. In the words of the U.S. Court of Appeals for the Ninth Circuit, the Blackwall
factors “have weathered the storms of the past century.” Saint Paul Marine Transp. Corp.
v. Cerro Sales Corp., 505 F.2d 1115 (9th Cir. 1974).
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American Maritime Cases (AMC), which is available on Westlaw and Lexis.

The third search method was consulting the salvage digests in West’s federal

digest. The fourth search method was consulting the salvage award tables

in the quinquennial digests of American Maritime Cases. The fifth search

method was consulting leading treatises on admiralty and maritime law. The

sixth search method was consulting early American digests and reporters.

The final search method was examining each case, however identified, for

two purposes: (i) find additional cases cited there within and (ii) cull cases

that, upon closer inspection, did not apply the Blackwall factors to deter-

mine an award for pure salvage.19

For each case, the data record the date of the decision, the court,20 the

award (in 1980 U.S. dollars), and the court’s finding on each Blackwall fac-

tor. The position of the court in the judicial hierarchy is coded as follows:

district court = 0, circuit court = 1, and Supreme Court = 2. The Blackwall

factors (other than the value of the property saved) are coded as binary

variables: low = 0 or high = 1. This is for two reasons. The first reason is

that courts routinely characterize salvage operations as “high order” or “low

order.” The second reason is that binary coding minimizes subjectivity and,

therefore, disagreement/error. The value of the property saved is recorded

in 1980 U.S. dollars.21

Of the 684 cases, 545 cases (79.7%) were decided by district courts, 134

cases (19.6%) were decided by circuit courts, and five cases (0.7%) were

decided by the Supreme Court. Table 1 displays summary statistics for the

award and the six Blackwall factors. For instance, it shows that the awards

range from $240 to $1,866,000, with a mean award of $74,000; the value of

the property saved ranges from $1,200 to $42,133,000, with a mean value

19. These searches yielded 881 pure salvage cases from 1779 to 2007. Of these
cases, 197 were excluded from the final data set because they were missing either a
clear statement of the salvage award or clear findings with respect to one or more of the
Blackwall factors.

20. The court is the court of final adjudication, and the data record the award and
findings of fact as determined by the court of final adjudication.

21. The following procedures were followed in coding the cases. After receiving
instructions from me, a research assistant read every case and hand coded every variable.
In addition, I met regularly with the research assistant to review his progress and discuss
any coding issues or questions. Finally, I audited his work by independently reading and
shadow coding 15% of the cases. Our disagreement rate was zero with respect to the
awards and less than 1% with respect to the Blackwall factors.
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Table 1. Summary Statistics

Standard
Variable Mean deviation Minimum Maximum

y Salvage award 74.44 153.35 0.24 1,865
x1 Labor expended by salvors 0.39 0.49 0 1
x2 Skill displayed by salvors 0.44 0.50 0 1
x3 Danger to salvors’ property 0.27 0.45 0 1
x4 Risk to salvors 0.18 0.39 0 1
x5 Value of property saved 1,385.71 2,913.98 1.20 42,133
x6 Danger to property saved 0.51 0.50 0 1

Notes: 684 cases from 1799 to 2007. y and x5 in thousands of 1980 U.S. dollars.

Table 2. Conditional Salvage Awards

Variable Cases Mean

y 684 74.44
y if x1 = 0 415 35.67
y if x1 = 1 269 134.24
y if x2 = 0 382 51.07
y if x2 = 1 302 103.99
y if x3 = 0 498 57.57
y if x3 = 1 186 119.60
y if x4 = 0 559 58.41
y if x4 = 1 125 146.09
y if x5 � x̄5 504 37.98
y if x5 > x̄5 180 176.50
y if x6 = 0 337 45.18
y if x6 = 1 347 102.85

Notes: y in thousands of 1980 U.S. dollars. x̄5 denotes the mean of x5.

of $1,386,000; and the labor expended by the salvors was high in 39% of the

cases.22 Table 2 displays the mean award conditional on different findings

on the Blackwall factors. For instance, it shows that the mean award for cases

in which the labor expended by the salvors was low is $36,000, whereas the

mean award for cases in which the labor expended by the salvors was high

is $134,000.

22. Though not shown in the table, it is worth noting that the award percentage (the
salvage award expressed as a fraction of the value of the property saved) ranges from less
than 1% to 85%, with a mean of 14%.
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3.2. Statistical ALR Model

The first step of the empirical analysis is to embed the ALR model in a

statistical model. Following Gilboa et al. (2006) and its progeny,23 I assume

y1 = ε1 and

yt =
∑
j<t

(
s(x j , xt ;	)∑
j<t s(x j , xt ;	)

)
y j + εt , t = 2, . . . , T, (6)

where εt
iid∼ N (0, σ 2) for t = 1, . . . , T . (Note that I include

	 ≡ (ω1, . . . , ωn) in (6) to make explicit the dependence of s on the

weights ω1, . . . , ωn in the weighted Euclidean distance d on which s

is based.) Model (6) posits that the outcome yt of the case at hand is

normally distributed around a similarity-weighted average of the outcomes

y1, . . . , yt−1 of prior cases. To highlight two key properties of the model,

rewrite (6) as

yt = (α1,t )yt−1 + (α2,t )yt−2 + · · · + (αt−1,t )y1 + εt , (7)

where αi,t = s(xt−i , xt )/
∑

i<t s(xi , xt ). From (7), we can see that (i) model

(6) is an autoregressive process of order (t − 1) and (ii) because the αi,t ’s

sum to one for each t , the process has a unit root (Lieberman, 2010).

Before proceeding to the next step of the empirical analysis, let me say a

few words about the relationship between model (6) and kernel regression.24

Kernel regression assumes a data generating process of the form

yt = g(xt ) + εt , t = 1, . . . , T, (8)

where εi
iid∼ (0, σ 2) and g is an unknown function. A standard estimator for

g is the Nadaraya–Watson estimator

ĝ(xt ) =
T∑

j=1

(
K (xt − x j ; H)∑T
j=1 K (xt − x j ; H)

)
yi ,

23. See, e.g., Gayer et al. (2007), Lieberman (2010), and Gilboa et al. (2011).
24. On kernel regression, see, e.g., Pagan and Ullah (1999). My comments below

echo the comments by Gilboa et al. (2011) on the relationship between the empirical
similarity model and kernel regression. For more on this relationship, see Gilboa et al.
(2006, 2011) and Lieberman (2010).
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where K is a kernel function and H is a diagonal matrix of bandwidth

parameters h1, . . . , hn . Note the connection between (6) and (8). Each gen-

erates a new/predicted value of y by taking a weighted average of the

observed values of y where the weights are a function the distance between

the new/hypothesized x and the observed values of x . Notwithstanding this

connection, however, there is an important distinction between (6) and ker-

nel regression. Kernel regression is a statistical technique that uses weighted

averaging to estimate (8), which assumes that the data are generated by an

unknown function g, whereas (6) assumes that the data are generated by

weighted averaging. In other words, (8) specifies a rule relating xt to yt ,

and thus assumes that the distribution of yt depends only on xt , whereas (6)

assumes that the distribution of yt depends not only on xt but also on the

history of prior cases, Ct = {(x j , y j ) : j < t}.

3.3. Plausibility of ALR Model

The next step of the empirical analysis is to assess whether the ALR

model is a plausible model for the data. I focus on the two key properties of

the model highlighted above: (i) model (6) is an autoregressive process and

(ii) the process has a unit root.

To investigate whether an autoregressive process could have generated

the data, I estimate a linear regression model and test for autocorrelation

in the residuals. Because salvage awards are bounded below by zero and

skewed to the right,25 the dependent variable is the log-transformed award.

The regressors comprise a constant and the six Blackwall factors, where the

value of the property saved is log-transformed.26 The model is estimated by

ordinary least squares.

I test for autocorrelation in the residuals using the Ljung–Box test and

the Runs test. The Ljung–Box test is a portmanteau test which consid-

ers the null hypothesis that the residuals are not autocorrelated against

the alternative hypothesis of an autoregressive process of order p.27

25. More than 72% of the awards are less than the mean award ($74,000).
26. The log-transformation of the value of the property saved is not an arbitrarily

imposed assumption; rather, it is the specification selected by the multivariable fractional
polynomial procedure of Sauerbrei and Royston (1999). For details, see the Appendix.

27. The Ljung–Box test was proposed by Ljung and Box (1978). For a textbook
treatment, see, e.g., Johnston and DiNardo (1997).
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Table 3. Autocorrelation and Unit Root Tests

Test Test statistic 5% critical value

Ljung–Box test
p = 6 52.604 12.592
p = 20 119.360 31.410
p = 40 205.136 55.758

Runs test −1.817 −1.645
ADF-GLS test (p = 40) −1.520 −1.950

Notes: For the Runs test, the critical value reflects a one-sided test against the
alternative of positive autocorrelation. For the ADF-GLS test, the critical value
is interpolated from tables presented by Elliott et al. (1996).

The test statistic is Q = T (T + 2)
∑p

j=1 ρ2
j /(T − j), where ρ j the j th

autocorrelation coefficient of the residual series. Under the null hypothesis,

Q is asymptotically distributed χ2(p). The Runs test is a nonparametric test

that considers the null hypothesis that the residual process is random against

the alternative of a nonrandom process.28 The test counts the number of

runs r above and below zero and compares it with the expected number of

runs r̄ . Under the null hypothesis, r̄ = (2n0n1/T ) + 1, where n0 and n1 are

the number of values above and below zero, respectively. The test statistic

is Z = (r − r̄)/sr , where sr =
√

2n0n1(2n0n1 − T )/T 2(T − 1). Under the

null hypothesis, Z is approximately distributed N (0, 1).

The results of both tests are reported in Table 3. For the Ljung-Box test,

results are presented for six and twenty lags, which correspond to the val-

ues suggested by Box et al. (1994) (who suggest min{20, T − 1}) and Tsay

(2005) (who suggests ln T ), respectively, and also for forty lags. In each

test, the null hypothesis is rejected at the 5% level, suggesting that the data

are not inconsistent with an autoregressive process.

To investigate whether the data generating process has a unit root, I

employ the ADF-GLS test proposed by Elliott et al. (1996). The ADF-GLS

test is an augmented Dickey-Fuller (ADF) test in which the time series

is detrended via generalized least squares (GLS).29 The ADF-GLS test is

“nearly efficient” in the sense that its asymptotic local power functions

are virtually indistinguishable from the Gaussian power envelope, and has

28. For a textbook treatment of the Runs test, see, e.g., Bradley (1968, Chapter 11).
29. For a textbook treatment, see, e.g., Davidson and MacKinnon (2004,

Chapter 14).
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greater power than the standard ADF test (which is not “nearly efficient”)

(Haldrup and Jansson, 2006). The test proceeds in two steps. First, it esti-

mates γ in the regression yt − ρ̄yt−1 = (1 − ρ̄)γ + vt , where ρ̄ = 1 − 7/T .

Second, it estimates δ in the regression �ỹt = δ ỹt−1 +∑p
j=1 η j�ỹt− j + ut ,

where �ỹt = ỹt − ỹt−1, ỹt = yt − γ̂ , and γ̂ is the estimate of γ obtained

in the first step. The test statistic is the ordinary t statistic for δ = 0. The

results of ADF-GLS test are reported in Table 3. Results are presented for

forty lags, which corresponds to the value suggested by both the sequen-

tial t criterion proposed by Ng and Perron (1995) and the modified Akaike

information criterion (MAIC) proposed by Ng and Perron (2000). The test

fails to reject the null hypothesis of a unit root at the 5% level, suggesting

that the data are not inconsistent with a unit root process.

Of course, the results of the autocorrelation and unit root tests reported

in Table 3 provide only indirect, negative assurance that the ALR model

is a plausible model for the data. The autocorrelation tests reject the null

hypothesis that the residuals from the linear regression model are not auto-

correlated, and the unit root test fails to reject the null hypothesis that the

data generating process has a unit root. These results are not inconsistent

with a data generating process that is autoregressive and has a unit root, but

they do not affirmatively establish that the data were generated by such a

process, let alone by the ALR model. Indeed, it is important to highlight two

limitations of the analysis. First, the Ljung-Box test and the ADF-GLS test

contemplate a fixed order autoregressive process,30 and thus can provide

only oblique evidence with respect to the ALR model, which is an autore-

gressive process of increasing order.31 Second, although the ADF-GLS test

is “nearly efficient” and has greater power than the standard ADF test, it

has low power in the present context. To get a sense of the test’s power,

I performed 1,000 Monte Carlo simulations in which I first generated sim-

ulated data under the alternative hypothesis that the data generating process

is the linear regression model estimated above and then tested for a unit root

30. More specifically, the Ljung-Box test tests against the alternative hypothesis
of a pth order autoregressive process, and the ADF-GLS test tests for a unit root in a pth
order autoregressive process.

31. I am not aware of any autocorrelation or unit root tests that contemplate an
increasing order autoregressive process.
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using the ADF-GLS test.32 At the 5% level, the test correctly rejects the null

hypothesis of a unit root 195 times out of 1,000, implying a power of 19.5%.

That said, the Runs test is more generally applicable, as it is nonparamet-

ric and makes no assumptions about the data generating process. Indeed,

not only does the Runs test on the residuals of the linear regression model

reject the null hypothesis of randomness, which provides negative assur-

ance on the plausibility of the ALR model, but a Runs test on the residuals

of the fitted ALR model (see Section 3.4) fails to reject the null hypothesis

of randomness, which provides positive assurance.33

3.4. Testing the Symmetry of the Similarity Function

The final step of the empirical analysis is to estimate the model by maxi-

mum likelihood and test the hypothesis β = 0 against the alternative β > 0,

i.e., test the hypothesis that the similarity function s is symmetric against the

alternative that s is asymmetric. As stated previously, this is the crucial step,

as the key innovation of the ALR model, and the paper’s main contribution,

is the asymmetry of the similarity function.

The loglikelihood function is

l(�) = −T

2
ln(2π) − T

2
ln(σ 2) − y′S′Sy

2σ 2
,

where � = (β, ω1, . . . , ωn, σ
2) is the vector of model parameters, y =

[y1 · · · yT ]′, and

S
(T ×T )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
−1 1 0 · · · 0

− s(x1, x3)∑
j<3 s(x j , x3)

− s(x1, x3)∑
j<3 s(x j , x3)

1 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

− s(x1, xT )∑
j<T s(x j , xT )

− s(x2, xT )∑
j<T s(x j , xT )

· · · − s(xT −1, xT )∑
j<T s(x j , xT )

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

32. To generate each simulated data set, I performed two steps. First, I sampled
684 residuals from a normal distribution with a mean of zero and a standard deviation
set equal to the root mean squared error of the residuals from the linear regression model
estimated above. Second, I used the fitted regression line and the simulated residuals
to generate 684 simulated awards, one for each observation in the data. To select the
number of lags for each ADF-GLS test, I took the greater of (i) the value suggested by
the sequestial t criterion and (ii) the value suggested by the MAIC.

33. The test statistic is −1.543, whereas the 5% critical value is −1.645.
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Table 4. ALR Model: Maximim Likelihood Estimates

Parameter Estimate Standard error

β Shape parameter for v 0.036∗ 0.017
ω1 Weight on x1 14.822∗ 2.602
ω2 Weight on x2 0.785 0.843
ω3 Weight on x3 3.419† 2.081
ω4 Weight on x4 6.101∗ 3.092
ω5 Weight on ln x5 9.232∗ 1.777
ω6 Weight on x6 11.823∗ 2.888
σ 2 Variance of εt 1.005∗ 0.019

Loglikelihood −974.097

Notes: Dependent variable is ln y. 684 cases from 1799 to 2007.
∗Significant at the 1% level (one-tailed test).
†Significant at the 10% level (one-tailed test).

Recall that β is the shape parameter for the precedential authority function

v defined in Equation (5), ω1, . . . , ωn are the weights in the Euclidean

distance function d defined in Equation (4), and σ 2 is the variance of

the error term εt in Equation (6). For the derivation of the loglikelihood

function, as well as an explication of the asymptotic theory of model (6),

which establishes a theoretical basis for simple hypothesis tests involving

the model parameters, see Lieberman (2010).

Table 4 presents the maximum likelihood estimates of the model param-

eters. Note that in the estimation both the award (y) and the value of the

property saved (x5) are log-transformed. The estimates for ω1, . . . , ω6 sug-

gest that each of the Blackwall factors, save only the skill displayed by the

salvors (x2), is statistically significant to the determination of the award.

They also suggest that the factors which receive the greatest weight are the

labor expended by the salvors (x1), the value of the property saved (x5), and

the danger to the property saved (x6), and that the factors which receive the

least weight are the skill displayed by the salvors (x2), the danger to the

salvors’ property (x3), and the risk incurred by the salvors (x4). In addi-

tion, the estimate for σ 2 suggests that unobserved heterogeneity in salvage

awards has unit variance.

Most importantly, the estimate for β is 0.036 with a standard error of

0.017, and the hypothesis β = 0 is rejected in favor of the alternative β > 0

at the 1% level. That is, I find that the similarity function is asymmetric, with

significant influence penalties and bonuses for cases decided by inferior

and superior courts, respectively (see Figure 4). The implication is that
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Figure 4. Influence Penalty/bonus Implied by β = 0.036.

precedential authority, and not just fact similarity, matters for precedential

influence. All else equal, the precedential influence of a prior case that was

decided by an inferior court is significantly less than the precedential influ-

ence of a prior case that was decided by a coequal court, which in turn is

significantly less than the precedential influence of a prior case that was

decided by a superior court.

4. Discussion

The use of analogical reasoning in law is a central topic in the jurispru-

dence and artificial intelligence and law literatures. Contributing to these

literatures, this paper presents a formal model of ALR and takes the model

to data. The ALR model posits that the outcome of the case at hand is a

weighted average of the outcomes of prior cases, where the weights are

a function of the fact similarity and precedential authority of the prior

cases. The results of the empirical analysis suggest that the ALR model

is a plausible model for the time series of reported decisions by federal



182 American Law and Economics Review V17 N1 2015 (160–191)

courts in U.S. maritime salvage cases. What’s more, the results indicate that

the similarity function is asymmetric, affirming that precedential influence

indeed depends not only on fact similarity, which is symmetric, but also on

precedential authority, which is not.

The ALR model and the empirical analysis, however, are subject to sev-

eral important limitations. First, the ALR model is a stylized representation

of ALR in its purest form—the judge reasons directly from case to case

without invoking a governing legal rule. A model that combines elements

of analogical and rule-based legal reasoning may be more realistic. In future

research, it would be interesting to explore a hybrid ALR–RLR model, per-

haps along the lines of a mixed SAR model (Anselin, 1988).

Second, the ALR model specifies a particular method of assess-

ment (similarity-weighted averaging of all prior cases), as well as a spe-

cific notion of similarity (exponentially decaying function of asymmetric

weighted Euclidean distance). Although I would argue that any model of

ALR must involve some similarity-weighted statistic of the outcomes of

prior cases, statistics other than the mean—e.g., the median or the mode—

are plausible alternatives. Another plausible alternative is a similarity-

weighted statistic of selected prior cases (as opposed to all prior cases)—

e.g., the k-nearest cases.34 Furthermore, one could specify other similarity

functions (e.g., s = 1/(1 + μ)),35 other precedential authority functions,36

or other distance functions (e.g., d(a, b) =∑n
i=1 ωi |ai − bi |).37

Third, the ALR model takes a representative agent approach and assumes

that all judges are equipped with the same similarity function. Allowing for

heterogeneous judges surely would be more realistic. However, tractabil-

ity would require making strong assumptions about the structure of such

heterogeneity.

Fourth, the empirical analysis relies on data that records the inputs and

outcomes of legal cases. Such data can provide only indirect evidence

34. A prior study that uses nearest neighbor methods for predicting judicial deci-
sions is Mackaay and Robillard (1974).

35. This specification of s, which exhibits subexponential decay, was suggested
by Gilboa et al. (2006) and used by Gayer et al. (2007) in a study of case-based reasoning
about real estate prices.

36. For instance, Hodgson et al. (1987) and Drezner and Wesolowsky (1989) sug-
gest other quasimetrics from which one could derive alternative specifications for v.

37. This specification of d is the weighted L1 distance. The L1 distance is also
known as the Manhattan distance or the the taxicab metric.
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regarding the method of legal reasoning.38 Nevertheless, it arguably is the

best available evidence. In many cases, a court’s written opinion offers no

direct evidence regarding the method of legal reasoning. Even in cases in

which the court’s opinion offers some direct evidence, it rarely is definitive

and, in any event, it arguably is of little probative value.39

Lastly, the empirical analysis speaks only to whether the ALR model is

a plausible model for the time series of outcomes in U.S. maritime salvage

cases. It says nothing about whether it is a plausible model for case outcomes

in other areas of law.40 Furthermore, the fact the ALR model is a legalist

model of judicial behavior suggests that it may not be well suited to other

areas of law, including, in particular, politically charged areas (to which we

might expect attitudinal or strategic models to be better suited).41

All of that said, I believe that taking a formal modeling approach to

ALR helps sharpen ideas not just about ALR but also about RLR, and

suggests ways to distinguish them theoretically. For instance, the model of

the legal environment in Section 2.1 suggests a way to theoretically dis-

tinguish ALR and RLR: under ALR the outcome of the case at hand is a

function of the inputs of the case at hand as well as the history of prior

cases, yt = Y (xt , Ct ), whereas under RLR the outcome of the case at hand

38. Moreover, although the coding scheme was guided by doctrinal considera-
tions and the coding procedures were designed to minimize disagreement/error, one can
always quible with the way that legal cases are coded in any study (or even argue that the
enterprise of coding legal cases is inherently flawed).

39. “As a rule, we conceive of the judge’s writing of an opinion as a procedure in
which he justifies his decision. The writing coincides neither necessarily nor realistically
with the process by which he reaches his decision, the process of discovery” (Murray,
1982). There are (at least) two reasons to think that a court might use the language of
RLR to justify its decision even if it engages in ALR in reaching its decision. First, “the
language of ‘rules’ is much more efficient and parsimonious than that of ‘cases”’ (Gilboa
and Schmeidler, 2000). Second, “[r]ules are excellent justification mechanisms” (Hunter,
2001).

40. In future research, it would be interesting to take the ALR model to data on
case outcomes in other areas of law. One area in which potentially suitable data already
have been collected is U.S. criminal confession cases. See Benesh (2002) and Kastellec
(2010).

41. In future research, it would be interesting to probe the extent to which non-
legalist theories of judicial behavior could be formalized using statistical models. For
example, I believe that one could profitably model an attitudinalist judge as a Bayesian
nonparametric statistician.
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is a function of the inputs only, yt = Y (xt ). Stated another way, under RLR

the outcome depends on a bounded number of parameters, whereas under

ALR the number of parameters increases with the prior case history (cf.

Gayer et al., 2007). In addition, the mathematical kinship between the ALR

model and kernel regression highlighted in Section 3.2 suggests a theoret-

ical connection between ALR and RLR: under ALR, although the judge

“does not explicitly resort to general rules and theories,” she “can be viewed

as someone who believes in a general rule of the form Y = f (X1, . . . , Xm)

but does not know the functional form of f and therefore attempts to esti-

mate it by nonparametric techniques” (Gilboa et al., 2006). It also suggests

a theoretical distinction: ALR posits that the data are generated by weighted

averaging, whereas RLR posits that the data are generated by a rule and uses

weighted averaging as a statistical technique to estimate the rule. In future

research, it would be valuable to explore whether these connections and

distinctions could be leveraged to develop a way to empirically distinguish

ALR and RLR.

Appendix

A.1. Proof that μ is a Quasimetric

Here I prove that the input distance function μ : R
n+1×R

n+1 → R+, on

which the similarity function s : R
n+1×R

n+1 → R++ is based, is a quasi-

metric on R
n+1.

Recall the definition of a quasimetric (Wilson, 1931).

DEFINITION A.1 A function ξ : R
n× R

n → R
n is a quasimetric on R

n if for

all x, y ∈ R
n:

(i) ξ(x, y) � 0;

(ii) ξ(x, y) = 0 if and only if x = y;

(iii) ξ(x, z) � ξ(x, y) + ξ(y, z) for any z ∈ R
n (triangle inequality).

Note that a metric is a quasimetric that also satisfies symmetry:

ξ(x, y) = ξ(y, x). A quasimetric is not necessarily symmetric, i.e., in

general ξ(x, y) �= ξ(y, x).
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THEOREM A.2 For all φ j , φt ∈ R
n and κ j , κt ∈ R, with x j = (φ j , κ j) and

xt = (φt , κt ), let

μ(x j , xt ) = v(x j , xt )d(φ j , φt ),

where

v(x j , xt ) = sec θ j t + tan θ j t ,

θ j t = arctan

(
β(κt − κ j )

d(φ j , φt )

)
, β � 0,

and d is a metric on R
n . Then μ is a quasimetric on R

n+1.

Proof. Recall from Section 2.2 that

μ(x j , xt ) = v(x j , xt )d(φ j , φt ) = f (x j , xt ) + β(κt − κ j ),

where

f (x j , xt ) =
√

(d(φ j , φt ))2 + (β(κt − κ j ))2.

Observe that f is a metric on R
n+1. Specifically, it is the weighted Euclidean

metric.

(i) Observe that f (x j , xt ) � |β(κt − κ j )| � 0. It follows that

μ(x j , xt ) � 0.

(ii) If x j = xt , then f (x j , xt ) = 0 and β(κt − κ j ) = 0, and hence

μ(x j , xt ) = 0. Now suppose μ(x j , xt ) = 0 but x j �= xt .

Then f (x j , xt ) > 0 and β(κt − κ j ) �= 0. However, because

f (x j , xt ) � |β(κt − κ j )|, this implies μ(x j , xt ) > 0, which

contradicts μ(x j , xt ) = 0.

(iii) Take any x ∈ R
n+1. To prove that μ satisfies the triangle inequal-

ity, we must show that μ(x j , xt ) � μ(x j , x) + μ(x, xt ). The con-

dition holds if and only if

f (x j , xt ) � f (x j , x) + f (x, xt )

+ β(κ − κ j ) + β(κt − κ) − β(κt − κ j ).
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Observe that β(κ − κ j ) + β(κt − κ) − β(κt − κ j ) = 0. Observe further

that

f (x j , xt ) � f (x j , x) + f (x, xt )

holds because f is a metric on R
n+1. Hence, the condition holds. �

A.2. Selection of ln x5 by Multivariable Fractional Polynomial
Regression

As stated in footnote 26, the log-transformation of the value of the prop-

erty saved (x5) is the specification selected by the multivariable fractional

polynomial (MFP) procedure of Sauerbrei and Royston (1999).42 The fol-

lowing is a brief summary of the MFP procedure. For a textbook treatment,

see Royston and Altman (1994, Chapter 6).

The standard MFP regression model may be expressed as

yt = Y (xt ; θ) = b0 +
h∑

i=1

bi xit +
n∑

i=h+1

m∑
j=1

bi j x
(p j )

i t + εt , t = 1, . . . , T,

where εt
iid∼ N (0, σ 2) and θ = (b0, b1, . . . , bh, bh+1,1, . . . , bh+1,m, . . . ,

bn1, . . . , bnm, σ 2). The first h covariates, x1, . . . , xh , are binary, categori-

cal, or ordinal, and the remaining covariates, xh+1, . . . , xn , are continuous.

The round bracket notation signifies the Box–Tidwell transformation

x
(p j )

i t =
⎧⎨
⎩x

p j

i t for p j �= 0

ln xit for p j = 0
.

The MFP algorithm selects the covariates and the powers p1, . . . , pm

for the continuous covariates. The researcher predefines the set of poten-

tial covariates, the set of potential powers, denoted P , and the maximum

degree of the fractional polynomial, denoted M . The researcher also pre-

defines two significance levels: α1, which determines the critical value for

variable selection; and α2, which determines the critical value for power

selection. The covariates are selected using a backward elimination proce-

dure in which the potential covariates are iteratively removed and added

42. A fractional polynomial is an extension of a conventional polynomial that
allows for noninteger and negative powers.
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based a sequence of significance tests at level α1. The powers are selected

using a closed test procedure in which an M degree fractional polynomial

is tested at level α2 against a linear model and then, if and as necessary,

against increasingly complex fractional polynomials. Once the covariates

and powers are selected, the parameter vector θ is estimated by maximum

likelihood.

To select the specification for the value of the property saved (x5),

which is the only continuous covariate, I ran an MFP regression in which

the dependent variable is the log-transformed salvage award, the set of

potential covariates comprises the six Blackwall factors, the set of potential

powers is P = {−4,−3,−2,−1,− 1
2 , 0,− 1

2 , 1, 2, 3, 4, 5, 6, 7, 8}, the max-

imum degree of the fractional polynomial is M = 5, the significance level

for covariate selection is α1 = 1, and the significance level for power selec-

tion is α2 = 0.05. Note that setting α1 = 1 forces the MFP algorithm to select

all the covariates into the model, which is justified here by the doctrinal prin-

ciple that courts are bound to apply all of the Blackwall factors in determin-

ing salvage awards. Although the model allows for a five-degree fractional

polynomial in x5 with powers ranging from −4 to 8, the MFP algorithm

selects a one-degree fractional polynomial with power zero, which corre-

sponds to a simple log transformation. For further details, see Teitelbaum

(forthcoming).
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