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A. DEDUCTIBLE CHOICES, PRICING MENUS, AND CLAIM PROBABILITIES

Tables S1, S2, and S3 summarize the deductible choices, pricing menus, and claim prob-
abilities, respectively, of the households in the core sample.

B. CRRA AND NTD uTILITY

In this section, we show that our results are very similar if, instead of assuming CARA
utility, we assume either (i) CRRA for reasonable levels of wealth or (ii) NTD utility.

We begin by assuming CRRA utility. That is, we assume p; = w; x r; = —w;u]/ (w;)/
u;(w;) is a constant function of w;. Following BMOT, we assume w; = $33,000, which cor-
responds to 2010 U.S. per capita disposable personal income. Figure S1 displays the per-
centage of rationalizable households that satisfy each shape restriction as we increase
the upper bound on r; from 0 to 0.0108 (which, given our wealth assumption, corre-
sponds to increasing the upper bound on p; from 0 to 356). The patterns displayed in
Figure S1 are remarkably similar to the patterns displayed in Figure 2. We note that the
patterns are essentially the same if we double wealth or cut it in half.!

Next, we assume NTD utility. That is, we consider a second-order Taylor expansion of
u;(w;) around w; (Cohen and Einav (2007), Barseghyan, Prince, and Teitelbaum (2011),
Barseghyan, Molinari, O’'Donoghue, and Teitelbaum (2013)). Figure S2 displays the per-
centage of rationalizable households that satisfy each shape restriction as we increase
the upper bound on r; from 0 to 0.0108. Again, the patterns displayed are very similar to
the patterns displayed in Figure 2.
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TABLE S1. Summary of deductible choices. Core sample

(4170 households).
Deductible Collision Comp. Home
$50 5.2
$100 1.0 4.1 0.9
$200 134 335
$250 11.2 10.6 29.7
$500 67.7 43.0 51.9
$1000 6.7 3.6 15.9
$2500 1.2
$5000 0.4

Note: Values are percent of households. Comp. stands for comprehensive.

TABLE S2. Summary of pricing menus. Core sample (4170 households).

Supplementary Material

Coverage Mean Std. Devw. 1st Pctl. 99th Pctl.
Auto collision premium for $500 deductible 180 100 50 555
Auto comprehensive premium for $500 deductible 115 81 26 403
Home all perils premium for $500 deductible 679 519 216 2511
Cost of decreasing deductible from $500 to $250:

Auto collision 54 31 14 169
Auto comprehensive 30 22 6 107
Home all perils 56 43 11 220
Savings from increasing deductible from $500 to $1000:

Auto collision 41 23 11 127
Auto comprehensive 23 16 5 80
Home all perils 74 58 15 294

Note: Annual amounts in dollars.

TaBLE S3. Claim probabilities (annual). Core sample (4170 households).

Collision Comp. Home
Mean 0.069 0.021 0.084
Standard deviation 0.024 0.011 0.044
1st percentile 0.026 0.004 0.024
5th percentile 0.035 0.007 0.034
25th percentile 0.052 0.013 0.053
Median 0.066 0.019 0.076
75th percentile 0.083 0.027 0.104
95th percentile 0.114 0.041 0.163
99th percentile 0.139 0.054 0.233

Note: Comp. stands for comprehensive.
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C. UPPER BOUND ON 7;

In this section, we discuss the upper bound on r;. For purposes of this discussion, let
7; denote this upper bound. Figure S3, panel (A) displays the percentage of all house-
holds in the core sample (N = 4170) that satisfy plausibility and each shape restriction
on (2;(-) as we increase 7; from 0 to 0.02. Panel (B) displays the percentage of rational-
izable households that satisfy each shape restriction on (2;(-) as we increase 7; from 0
to 0.02. In panel (B), the fraction of rationalizable households that satisfy a particular
shape restriction at a given r; is calculated dynamically: it is the number of households
that satisfy the shape restriction at the given r; divided by the number of households
that satisfy plausibility at the given 7;.2

The fraction of households that satisfy plausibility is roughly 87 percent for all 7;
between zero and about 0.011. As we note in Section 4.1, virtually every household
that violates plausibility in this range chose an auto collision deductible of $200. For
7; greater than about 0.011, the fraction of households that satisfy plausibility steadily
increases with 7;, hitting roughly 97 percent at 7; = 0.02. However, such levels of abso-
lute risk aversion are absurdly high. Here they imply/require implausibly low values of
0;(nij)—close to zero for all u;;—so as to rationalize the deductible choices of these
households (particularly their auto collision deductible choices). As a result, the zero in-
tercept model (i.e., objective expected utility theory) cannot rationalize most of these
households. This is why, once 7; surpasses about 0.011, the zero intercept curve levels
off in panel (A) and declines in panel (B) (having achieved its maximum at 0.0108). The
monotone probability distortions model, by contrast, can rationalize a greater number
of these households. This is because (2;(u;;) can be increasing even if it is implausibly
low for all w;;. This is why, once 7; surpasses about 0.011, the monotonicity curve in-
creases along with the plausibility curve in panel (A) (though it also declines in panel (B),
indicating that the monotone distortions model cannot rationalize the majority of these
households).

D. MONOTONICITY AS ¥; INCREASES

Figure 2 shows, inter alia, that the percentage of rationalizable households that satisfy
monotonicity increases as we increase the upper bound on 7;. In this section, we discuss
the intuition behind this result.

Consider a setting with two coverages, j € {I, II}, and three deductible options in each
coverage, D; = {250, 500, 1000} for j =1, II, and suppose that u;; < u;11. Monotonicity fails
if LB,’I > UBiH.

Recall that

LB; = rnaX{O, max Aij} and UB;= min{l, min Aij}’
d>d* d<d*

2In Figure 2, by contrast, the fraction of rationalizable households that satisfy a particular shape restric-
tion at a given 7; is calculated statically: it is the number of households that satisfy the shape restriction at
the given 7; divided by the number of households that satisfy plausibility with 7; fixed at 0.0108 (N = 3629).
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FiGure S3. Increasing the upper bound on r;.
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where
Ajj=A4;(d)
= (wi(w; — pij(d)) — wi(w; — pij(d*)))
/{[ui(wi — pij(d)) — ui(w; — pij(d) — d)]
— [wi(wi — pii(d*)) — ui(w; — pi(d*) —d*)]}.

Assuming interior solutions, note that for each j, the deductible d > d* that defines LB;;
is necessarily higher than the deductible d < d* that defines UB;;. For example, assum-
ing the household chooses d* = 500, then LB;; = 4;;(1000) and UB;; = A4;;(250).

Consider the marginal monotone household, for which LB;; = UB;j; at some r; > 0.
The key insight is that increasing r; decreases both LB;; and UB;j, but it decreases LB
more. Intuitively, this is because the larger are the stakes (the deductibles), the larger is
the decline in £2;(u;;) that is required to explain/preserve the household’s choice (i.e.,
to keep the household from choosing a higher deductible). It follows that increasing r;
yields LB,’I < UBZ'H.

This is best illustrated in the case of NTD utility. With NTD utility, the choice d* = 500
implies the £2-intervals

pi1(500) — p;1(1000)

1(250) — p;r(500
1 =LB; S‘()i(ﬁ’vil) <UB; = plI( : ) plI( )
500 + Eri(10002 —500%) 250 + Erl_(5002 —250%)
and
1(500) — p;r (1000 250) — (500
pin( . ) — pit( ) =LBi < 2;(uinn) <UBj = pin( - ) — pin( ) ‘
500+ 573(1000% — 500%) 250 + 57i(500° — 2507)

Let LB;; = UB;j; at some r; > 0. Note that

2 e
7 IBy= —lLBiI|: (1000° - 500°) } <0
)

: 1

i > Ls00+ 57i(10007 - 5007
and

J 1 500% — 2502
;UBiII = __UBiII|: ( ) ]
! 250 + Er,-(soo2 —250%)
1 500% — 2502
T E:
250+ i (500% — 2507)

Note further that

(1000% — 5007) (5007 — 250%)
>

500 + %r,-(lOOOZ —500%) 250+ %r,- (500 — 2507)
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To see this,

(1000 — 500%) N (500% — 2507)
500 + %ri(10002 —500%) 250+ %ri (500 — 2507) ’
250(1000% — 500) > 500(500% — 250?),
(1000 — 500)(1000 + 500) > 2(500 — 250)(500 + 250),
(1000 — 500)(1000 + 500) > (500 — 250)(1000 -+ 500),
(1000 — 500) > (500 — 250).

It follows that ,;%.LBiI < ﬂirl_UBiI < 0. Thus, increasing r; yields LB;; < UBj.

E. POWER OF REVEALED PREFERENCE TEST

As explained in footnote 52, Dean and Martin (forthcoming) propose a modification of
Beatty and Crawford’s (2011) success measure that, in our application, calls for replacing
Bronars’ alternative of uniform random choice in each coverage with an alternative of
random choice according to the marginal empirical distribution of choices in each cov-
erage. Table S4 reports the Beatty—Crawford success measure, under Dean and Martin’s
alternative, for monotonicity, unit slope, KR loss aversion, Gul disappointment aversion,
and zero intercept. Naturally, under Dean and Martin’s alternative, which is closer to the
null, the pass rates are higher and the Beatty—-Crawford statistics are lower for each shape
restriction. Nevertheless, the results continue to favor a model with unit slope probabil-
ity distortions and a model with monotone probability distortions over the other models
considered.

TABLE S4. Power of revealed preference test (Dean-Martin alternative). Rationalizable subsam-
ple (3629 households).

(@) (b) (© (d)
Percentage of Households

Satisfying Restriction

Empirically-Weighted 95 Percent Beatty—Crawford
Shape Restriction Actual Random Choice Confidence Interval ~ Success Measure
Monotonicity 84.8 72.8 71.6 73.9 12.1
Unit slope 61.6 44.3 42.9 45.7 17.3
KR loss aversion 422 31.7 30.4 32.8 10.5
Gul disappointment aversion ~ 43.0 31.6 30.3 32.7 11.4
Zero intercept 39.6 29.4 28.1 30.5 10.3

Note: Column (a) reports results for the actual data. Column (b) reports means across 200 simulated data sets, each com-
prising 3629 observations of three deductible choices (one for each coverage), where each choice is drawn randomly from the
coverage-specific empirical distribution of observed choices. Column (c) reports 95 percent confidence intervals for the means
reported in column (b). The Beatty-Crawford success measure is the difference between columns (a) and (b).
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E MINIMUM DISTANCE {2
E1 Identification, consistency, and asymptotic normality

In this section, we prove that under mild conditions (satisfied in our data) the parameter
vector 0 is point identified, and we establish the consistency and asymptotic normality
of our sample analog estimator. We also demonstrate that its critical values can be con-
sistently approximated by nonparametric bootstrap.

We estimate a linear point predictor

Q(wy) = 6'my;,
OE(a,b,C,d,e)f)’
my; = (L, iy (i), (i), (eip)®, (),

obtained by finding the value of # that minimizes the expected average Euclidean dis-
tance from 6(#1’;’) to the random intervals Z;; = [LB;;, UB;;], which result from the re-
vealed preference arguments and the stability, CARA, and plausibility restrictions as ex-
plained in the paper, and where the average is taken over j € {L, M, H}. We restrict the
analysis to the subsample of monotone households, for a sample of size N = 3079. In
what follows we let the members of this subsample be denoted i =1, ..., N. We recall
that with CARA utility, LB;; and UB;; do not depend on wealth. Moreover, we recall that
the values of LB;; and UB;; do not depend on w;;: only the relative locations of a house-
hold’s 2-intervals depend on its claim probabilities.
For a given point r € R and interval T = [7, 7¢/], let

dit,T)= in; |t — 7| =max{(r, — )¢, (1 — )4},
TE

where (z);+ = max(0, z). Then our point predictor satisfies

) 1
0 € argglelgE[g X]: d(6'm;;, Iij)]

1
= arglel’g({)lEl:g Xj:max{(LBij — 0’m,~j)+, (0’mij — UBij)+}i| ,
where O is a compact and convex parameter space and the term inside square brackets
is the average distance of the point predictor to the intervals in the three contexts.

For brevity, we denote by p;; the premium that household i pays in context j for cho-
sen deductible d;;. We now show that ) is the unique minimizer of £ [% > i d(0'm;;, 7;)),
we propose a sample analog estimator of 6y, and we establish its consistency.

THEOREM 1. Suppose that we observe an independent and identically distributed (i.i.d.)
sample {(pjj, djj, ,u,-j)j:L,M,H}filfrom the joint distribution of {(pj, dj, uj)j=L,m,H}, Such
that for each j € {L,M,H}, Pr(LB; < UBj) = 1 and assume that ZjE{L,M’H}Pr(O <
LB;, UB; < 1) > 0. Assume that the support of each pj, j=L,M,H, is R, and condi-
tionalon (d;j)j=r . m,H, {(Kj, Pj)j=L,m,H} have an absolutely continuous joint distribution
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(with respect to Lebesgue measure). Assume that the parameter space O is compact and
convex. Let

. [1 /
0 € argrgnelgE[g . Z d(6'm;;, Ii'):|,
jelL,M,H)

N
11
Oy € argmin — = Z Z d(0'm;;, 7).
66 N 3 = jell, M, H)

Then 0y is the unique minimizer ofE[% Zje{L’M,H} d(0'm;;, Z;;)] and
10N — 00l 250 as N —s oo.

Proor. We verify assumptions (i)—(iv) in Newey and McFadden (1994), from which the
result follows.

Assumption (i) of Newey and McFadden (1994) requires E[1 3 jetn,m, iy 40'my;, T
to be uniquely minimized at ,. Observe that the objective function is convex in 0 be-
cause Z;; is a convex set and the sum of convex functions yields a convex function. Hence
its set of minimizers is convex. Suppose 6, is also a minimizer of £ [% » jelL,M,H) d(0'my;,
Z;j)]. For any y € (0,1) let 8, = y0y + (1 — )01, and for u € {+1, -1} let h(Z;,u) =
max{uLB;, uUB;}. Then

e X doym)|

JjelL,M,H}

1 /
3 je{LZM H}E[”E{T?’X”(uoymij i, u))+]

1
== > E[ max (y(u@ym;; — h(Z;j, u))
jetL M,y e

+ (1= ) (ubimy — h(Zy, w)), |

1
<= Z E|( max y(ubymj — h(Zj,u))
3 jeil oty [(”e{“’*”
1— o/m“_h I..’ ]
(=) (u0m = T 0)
Observe that

0,m;; — h(Z;, 1— ) (u0\m;; — h(Z;,
(e 7(000my = T 0) + s (1 =) (g = Ty00))

< max u@ m; —h I~,u> 1- ( max uf,m; —h I~,u) ,
_y(ue{-i-l,—l} o1M;j ( ij ) ++( v) wel b 110 ( ij ) .
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and a strict inequality holds if and only if

_ / ..
<ue{r2?,x—1} uooml] h(Z;, u)) (ue{rjrg'i)il} ud m;; — h(Z;, u)) <0
This occurs if and only if 6ym;; ¢ 7;; and 8)m;; € Z;; or 6,;m;; € Z;; and 6, m;; ¢ Z;;. Hence,
if for all 8; # 6, such that 6, € O,

Z (Pr(6ym;; ¢ Z;;, 0ym; € T;j) + Pr(0ym;; € Z;j, 0)my; ¢ 7;;)) > 0,
je{L,M ,H}

the objective function is strictly convex at 6y, and therefore 0y is its unique minimizer. To
see that this condition is satisfied, consider the event (LB; < O’Qmij < UB;) and suppose it
has positive probability for at least one j € {H, L, M}.If LB; = UB, itimmediately follows
that #\m;; ¢ [LB;, UB;]. Hence suppose LB; < UB;. Now we want to show that with pos-
itive probability 06m,~j € [LB;, UB;] and 0’1m,~j ¢ [LB;, UB;]. Because p; has full support
on R, ; and because LB; and UB; depend on p;, we can find a set of (p;, u;) of positive
probability where either #;m;; < LB; < jm;; < UB; or LB; < §;m;; < UB; < §/m;; holds.
Hence, the result follows.

Assumptions (ii) and (iii) in Newey and McFadden (1994) are immediately satisfied,
because we have assumed 0 to be compact and because E[% Zje{L,M,H} d(0'myj, Z;;)] is
convex in 0 and therefore continuous in 6.

Assumption (iv) in Newey and McFadden (1994) requires

N
1 1
sup Y3 E E d(ﬂ/mij,Iij) —E[§ E d(ﬂ/m;j,I;j)]‘ 0

0O~ i1 je{L,M,H) jelL,M,H}

as N — oo.

This uniform convergence obtains observing that for any 6 € ® and for each j €
{L,M,H},
0'm;; — h(Z; < 0'm;; — h(Z
max (uo'my —h(Tyw), < max |ub'my; — h(Zy, w)|

< 10][Imy;]| + s |h(Zij, w)
< 110]lImy]| + max{|LB;|, [UB;|}.

Because 0 is a compact set, [|@]| is bounded for any 0 € @; because u; € [0, 1], [[my;|| is
bounded; and because Pr(0 < LB; < UB; < 1) =1, also max{|LB,|, |UB;|} is almost surely
bounded. Hence, E[% ZjE{L,Mﬂ} d(0'myj, Z;;)] < oo, and therefore for each 6 € 0, by the
weak law of large numbers for i.i.d. random variables,

Z > d(O’m,-j,I,-j)—EE 3 d(o/m,-j,zij)ﬂLo

i=1 je{L,M H)} jelL,M,H}

as N — oo.
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Recalling that " jetn,m, iy 4(0'my;, Z) is a convex function of , uniform convergence
follows from Pollard’s convexity lemma (Pollard (1991)). O

Next, we show asymptotic normality of our estimator.

THEOREM 2. Let the assumptions of Theorem 1 hold, and assume that for each d;, LB,
UB, have an absolutely continuous distribution (with respect to Lebesgue measure) with
density function fsj(t), sj = LBj, UB; such that for each j € {L, M, H}, E[(fUBj(%mij) +
fiB; (%mij))m,-jm;.j] exists and is nonsingular. Then

VN Oy — 00) 5 N0, 3),

where 3, is nonsingular and provided in equation (2) below.

Proor. We establish the result by verifying the conditions of Example 3.2.22 in van der
Vaart and Wellner (1996), which in turn verify the conditions of their Theorem 3.2.16.

By the triangle inequality, d(6'm;;, Z;j) is Lipschitz in 0, and in particular for any
01,0, <0,

1
‘3 Y [d(6imy;, ) — d(6ymy;, Ty)]
je{L,M ,H}

1
=3 D ldOimy, 7y) — d(0ymy, T;)|
Jje{L,M ,H}

1
<101=0205 > Imyl.
je{L,M,H}

This verifies the first condition in Example 3.2.22 in van der Vaart and Wellner (1996).
Next, observe that for any 6 € @ such that 8’'m;; is in the interior of Z;;, the gradient of
d(0'my;, Z;;) with respect to 0 exists and is equal to 0. For any 6 € O such that 0'm;; ¢ Z;;,

v,,(% > d(0'my, Iij)>

JjetiL,M,H}

1
= — Z mij[—l(LBij — 0/1111']' > 0) + 1(0/1111']' — UB,']' > O)]

Jje{L,M,H}

ey

Forany 0 € O such that ' m;; = LB;; or 'm;; = UB;;, the directional derivatives do not co-
incide. However, under our assumptions of full support for p (and w) on R, 4, this hap-
pens with probability 0. On the other hand, % > Jell, M, H) Pr(6ym;; ¢ Z;;(m;)) > 0. Hence,
observing that each element on the right hand side of equation (1) is bounded by 1 in
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absolute value, we obtain

E[(% > (d(0'my, T;) — d(0'my, Ty))

je{L,M ,H}
1 2
—(0— 00)/V0(§ Z d(o/mij, Iij))) i|
jelL,M,H)

=0(110 — 0o[1*).

This verifies the second condition in Example 3.2.22 in van der Vaart and Wellner
(1996).

Consistency of 0y for 6y is established in Theorem 1. We are left to show that the
map 0 — E [% > Jell, M, H) d(0'mj;, Z;))] is twice continuously differentiable at 8, with
nonsingular second derivative matrix /. Observe that

V:%E[W(% Z d(0’m,-j,I,-j)):H

je{L,M,H} 6=6y
1 a :
=z > — g E[mij{Pr(6'my; — UB; > 0lu;)
je{L,M ,H}

— PI‘(LBJ' — O/m,-j > 0|/,LJ)}]

0=0,

1
=3 > E[(fus,(6gmy) + fis, (0m;))mymi].
je{L,M,H}

It follows that I is nonsingular.
Finally, using the result in Example 3.2.22 in van der Vaart and Wellner (1996), we
obtain

1 I
3= V_IE[Vo(g Z d(ﬂ/mij,Ii'))
jelL,M,H) =0
, / 2)
X Vg(g Z d(o/mij,I,j)> :IV—l.
AL, M, H) 0=09 H

Last, we show that the critical values of the asymptotic distribution in Theorem 2
can be consistently approximated by nonparametric bootstrap.

COROLLARY 3. Let the assumptions of Theorem 2 hold. Let Fy(t) = P(vVN(Oy — 0y) <
1) and Fp(t) = Pp(oy'vVN(05 — 0y) < 1), where Pg is the probability conditional on
the data, 0% = Y31, and 6% = argmingce %%Zf\il WNi D jeir,m, iy 40 My, T), with

(wn1s - -, wyN) ~ Multinomial(N; 1/N, ..., 1/N), is the classical Efron bootstrap estima-
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tor. Then

sup|Fp(t) — Fn(t)|=0p(1) asN — oc.
teR

Proor. The result follows immediately by observing that the assumptions of Theo-
rem 2.4 in Bose and Chatterjee (2003) are verified in the proofs of our Theorems 1
and 2. O

E2 Lower order polynomials

In this section, we show that the minimum distance (2 is robust to specifying a lower
order polynomial. Figure S4 compares the minimum distance (2 that we present in the
paper, which is based on a fifth-degree polynomial, with the minimum distance (2 that
would result if we instead specify a second- or first-degree polynomial. As the figure
shows, all three specifications yield very similar functions.

G. RANK CORRELATION OF CHOICES

In this section, we show that the results presented in Table 5 are very similar under
quadraticity and linearity. Table S5 is an extension of Table 5. Column (c) breaks out the
rank correlations for the rationalizable households that satisfy and violate quadraticity.
Column (d) breaks out the rank correlations for the rationalizable households that sat-
isfy and violate linearity.
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TaBLE S5. Rank correlation of deductible choices. Rationalizable subsample (3629 households).

(@) (b) (©

Rationalizable Rationalizable Rationalizable Rationalizable Rationalizable Rationalizable

Households Households Households Households Households

All Rationalizable = That Satisfy That Violate That Satisfy That Violate That Satisfy
Households Monotonicity Monotonicity = Quadraticity =~ Quadraticity Linearity

(100 Percent) (84.8 Percent) (15.2 Percent) (82.0 Percent) (18.0 Percent) (80.4 Percent)

Households
That Violate
Linearity
(19.6 Percent)

Auto collision and auto comprehensive 0.490* 0.553* 0.335* 0.562* 0.359* 0.563* 0.334*
Auto collision and home 0.290* 0.363* —0.019 0.409* —0.068 0.390* —0.062
Auto comprehensive and home 0.285* 0.352* 0.029 0.358* —0.056 0.349* —0.023

Note: Each cell reports a pairwise Spearman rank correlation coefficient. *Significant at the 1 percent level.
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Ficure S5. Full pricing menu in home.

H. PRICING MENU IN HOME

In this section, we show that including the $2500 and $5000 deductible options in the
home menu would not materially change our results. Figure S5 displays the percentage
of rationalizable households that satisfy each shape restriction as we increase the upper
bound on r; from 0 to 0.0108, after restoring the $2500 and $5000 deductible options to
the home menu. The patterns displayed in Figure S5 are nearly identical to the patterns
displayed in Figure 2.

I. ASYMMETRIC INFORMATION

In this section, we address the concern that the asymmetric information twins—moral
hazard (unobserved action) and adverse selection (unobserved type)—may be biasing
our claim rate estimates and hence our results.

1.1 Moral hazard

Throughout our analysis, we assume that deductible choice does not influence claim
risk. That is, we assume there is no deductible-related moral hazard. There are two
types of moral hazard that might operate in our setting. First, a household’s deductible
choice might influence its incentives to take care (ex ante moral hazard). Second,
a household’s deductible choice might influence its incentives to file a claim after
experiencing a loss (ex post moral hazard), especially if its premium is experience
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rated or if the loss results in a “nil” claim (i.e., a claim that does not exceed its de-
ductible). For either type of moral hazard, the incentive to alter behavior (take more
care or file fewer claims) is stronger for households with larger deductibles. Hence,
we investigate whether moral hazard is a significant issue in our data by examin-
ing whether our claim rate estimates change if we exclude households with high de-
ductibles.

Specifically, we rerun our claim rate regressions using a restricted sample of the
full data set in which we drop all household—coverage—year records with deductibles
of $1000 or larger. We then use the new estimates to generate new claim rates for all
households in the core sample (including those with deductibles of $1000 or larger).
Comparing the new claim rates with the benchmark claim rates, we find that they are
essentially indistinguishable: in each coverage, pairwise correlations exceed 0.995 and
linear regressions yield intercepts less than 0.001 and coefficients of determination (R?)
greater than 0.99. Moreover, the estimates of the variance of unobserved heterogeneity
in claim rates are nearly identical.3

The foregoing analysis suggests that moral hazard is not a significant issue in
our data. This is perhaps not surprising, for two reasons. First, the empirical evi-
dence on moral hazard in auto insurance markets is mixed. (We are not aware of any
empirical evidence on moral hazard in home insurance markets.) Most studies that
use “positive correlation” tests of asymmetric information in auto insurance do not
find evidence of a correlation between coverage and risk (e.g., Chiappori and Salanié
(2000); for a recent review of the literature, see Cohen and Siegelman (2010)).* Sec-
ond, there are theoretical reasons to discount the force of moral hazard in our set-
ting. In particular, because deductibles are small relative to the overall level of cov-
erage, ex ante moral hazard strikes us as implausible in our setting.® As for ex post
moral hazard, households have countervailing incentives to file claims no matter the
size of the loss: under the terms of the company’s policies, if a household fails to re-
port a claimable event (especially an event that is a matter of public record; e.g., colli-
sion events typically entail police reports), it risks denial of all forms of coverage (no-
tably liability coverage) for such event and also cancellation (or nonrenewal) of its pol-

icy.

3The revised estimates are 0.22, 0.56, and 0.44 in auto collision, auto comprehensive, and home, respec-
tively, whereas the corresponding benchmark estimates are 0.22, 0.57, and 0.45.

4Beginning with Abbring, Chiappori, Heckman, and Pinquet (2003) and Abbring, Chiappori, and Pinquet
(2003), a second strand of literature tests for moral hazard in longitudinal auto insurance data using various
dynamic approaches. Abbring, Chiappori, and Pinquet (2003) find no evidence of moral hazard in French
data. A handful of subsequent studies present some evidence of moral hazard using data from Canada and
Europe. The only study of which we are aware that uses U.S. data is Israel (2004), which reports a small
moral hazard effect for drivers in Illinois. Each of these studies, however, identifies a moral hazard effect
with respect to either liability coverage or a composite coverage that confounds liability coverage with other
coverages. None of them identifies a separate moral hazard attributable to the choice of deductible in the
auto coverages we study.

5We note that Cohen and Einav (2007) reach the same conclusion. Furthermore, we note that the princi-
pal justification for deductibles is the insurer’s administrative costs (Arrow (1963)).
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Finally, we note that even if our claim rates are roughly correct, the possibility of nil
claims could bias our results, as they violate our assumption that every claim exceeds
the highest available deductible (which underlies how we define the deductible lotter-
ies). To investigate this potential, we make the extreme counterfactual assumption that
claimable events invariably result in losses between $500 and $1000—specifically $750—
and we recalculate (i) the distribution of the minimum plausible r; for each shape re-
striction on (2;(-) and (ii) the percentage of rationalizable households that satisfy each
shape restriction on £;(-) as we increase the upper bound on r; from 0 to 0.0108. For
each shape restriction, the distribution of the minimum plausible r; shifts to the right,
such that for each nondegenerate shape restriction the median increases from 0 to be-
tween 0.0005 and 0.0014, and for zero intercept the median increases from 0.0015 to
0.0029. Consequently, for values of r; below 0.0014, for each shape restriction a lesser
percentage of rationalizable households satisfy the restriction, though it still is the case
that a greater percentage satisfy monotonicity, quadraticity, linearity, and unit slope
than zero intercept. Importantly, however, for values of r; above 0.0015, for each shape
restriction the percentage of rationalizable households that satisfy the restriction in-
creases rapidly and more or less returns to its benchmark level and trajectory. The in-
tuition behind these findings is straightforward. Under the assumption that claimable
events invariably result in losses of $750, the lottery associated with a $1000 deductible
becomes L1y = (— p1ooo, 1 — 43 —p1ooo — 750, w). This increases the lower bound on the
0-interval for households choosing a deductible less than $1000, and for many house-
holds the lower bound ends up exceeding the upper bound. The only way to restore
LB;; < UB;; is then to increase r;. Once that happens, the need for probability distortions
remains more or less the same.

1.2 Adverse selection

1.2.1 Heterogeneity unobserved by the econometrician In terms of adverse selection,
the standard concern is that there may be heterogeneity in claim risk that is observed
by the households but unobserved by the econometrician. That is, a household may
have better information about its claim risk than does the econometrician. To assess the
potential effect on our results of heterogeneity that may be unobserved by us, we utilize
the distributions of exp(¢;;) that we estimated in the claim rate regressions in Section 2.2
to simulate the distribution of the percentage of rationalizable households that satisfy
each restriction on (2;(-). More specifically, for every rationalizable household i and ev-
ery coverage j, we construct 7\17 = exp(X;jﬁj) exp(g;j), where exp(e;) is drawn from the
gamma distribution estimated in the claim rate regression for coverage j, conditional
on household i’s ex post claims experience in coverage j. Next, we let i;; =1 — exp(—Xij)
and we use ;; in constructing the rationalizable households’ £2-intervals. We then re-
calculate the percentage of rationalizable households that satisfy each shape restriction
on (2;(-). We repeat this procedure 200 times and record the 5th, 25th, 50th, 75th, and
95th percentiles of each percentage.

6We emphasize that this is an extreme counterfactual assumption, as it surely is the case that most, if not
all, claimable events result in losses that exceed $1000.
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TABLE S6. Unobserved heterogenety in risk. Rationalizable subsample (3629 households).

(@ (b) (©

Percent of Percent of
Households Households
Satisfying Satisfying
Restriction Simulated Distribution Restriction
With 4 = Est. With 4 = Avg.
Shape Restriction  claim prop.  SthPctl. 25th Pctl. 50th Petl.  75th Petl. 95th Pctl.  paim Prob.
Monotonicity 84.8 84.0 84.4 84.6 84.7 85.1 86.2
Quadraticity 82.0 81.8 82.0 82.2 82.4 82.7 80.0
Linearity 80.4 80.5 80.7 80.9 81.2 81.4 78.6
Unit slope 61.6 55.9 56.4 56.9 57.3 57.7 62.1
Zero intercept 39.6 31.3 31.9 323 32.7 332 42.9

Table S6, column (b) reports the results. For each shape restriction, the 5th-95th in-
terpercentile range is narrow, 1-2 percentage points. For monotonicity and quadraticity,
the percentage we report in Table 1, column (a) (which is reproduced in Table S6, col-
umn (a) for the reader’s convenience) lies between the 5th and 95th percentiles of the
simulated distribution. It is unlikely, therefore, that unobserved heterogeneity is biasing
our results and conclusions regarding monotone or quadratic probability distortions.
For linearity, the percentage we report in Table 1 lies just below the 5th percentile of
the simulated distribution. This suggests that our results may understate somewhat the
extent to which the data are consistent with linear probability distortions. Conversely,
for unit slope and zero intercept, the percentage we report in Table 1 exceeds the 95th
percentile of the simulated distribution. This suggests that our results may overstate the
extent to which the data are consistent with the unit slope distortions model and the
objective expected utility model.

1.2.2 Heterogeneity unobserved by the households The reverse concern is that the
econometrician may have better information about the households’ claim risk than
do the households themselves. To assess the potential effect on our results of hetero-
geneity that may be unobserved by the households, we recompute the percentage of
rationalizable households that satisfy each shape restriction on (2;(-) under the ex-
treme assumption that, in each line of coverage, every household’s claim probability
corresponds to the sample mean reported in Table S3. Table S6, column (c) reports the
results. The percentages increase under monotonicity, unit slope, and zero intercept,
and decrease under quadraticity and linearity. Thus, if there is any bias, it does not
operate in a consistent direction. Moreover, the differences are small, 2.0 percentage
points or less, except in the case of zero intercept, where the difference is somewhat
larger at 3.3 percentage points. Hence, if there is any bias, it likely is not material to
our results and conclusions regarding probability distortions; at most, our results may
understate somewhat the extent to which the data are consistent with the objective
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expected utility model. Of course, the potential bias here runs in the opposite direc-
tion of the potential bias from heterogeneity that is unobserved by the econometri-
cian.

1.3 Alternative claim probabilities

In this subsection, we explore further the sensitivity of our results to our claim risk esti-
mates. We consider three alternative cases: (i) claim probabilities that are derived from
fitted claim rates that do not condition on ex post claims experience, (ii) claim probabil-
ities that are half as large as our estimates, and (iii) claim probabilities that are twice as
large as our estimates.

Figures S6, S7, and S8 display, for cases (i), (ii), and (iii), respectively, the percentage
of rationalizable households that satisfy each shape restriction as we increase the upper
bound on r; from 0 to 0.0108. In case (i), the patterns are very similar to the patterns
displayed in Figure 2. In cases (ii) and (iii), the patterns for monotonicity, quadraticity,
and linearity are very similar to those displayed in Figure 2. However, the patterns for
unit slope and zero intercept are somewhat different. Generally speaking, compared to
the base case (Figure 2), the percentage of rationalizable households that satisfy unit
slope and zero intercept are a bit higher in case (ii) and quite a bit lower in case (iii). This
suggests that if we have grossly overestimated (resp. grossly underestimated) the house-
holds’ claim probabilities, then our results may understate somewhat (resp. overstate
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quite a bit) the extent to which the data are consistent with the unit slope distortions
models and the objective expected utility model.
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